Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (23): 152-153.DOI: 10.3778/j.issn.1002-8331.2009.23.042
• 数据库、信息处理 • Previous Articles Next Articles
SUN Yang,LUO Ke
Received:
Revised:
Online:
Published:
Contact:
孙 洋,罗 可
通讯作者:
Abstract: In order to overcome the sensitive of FCM algorithm to the initial value,propose a FCM algorithm based on immune genetic algorithm.This algorithm uses the theory of immune system and the adjustment method of adaptive genetic operator(That is immune genetic algorithm) to improve FCM algorithm.And experiments have proved that this algorithm can effectively solve the premature convergence issues,guarantee the diversity of the population,and make clustering converge quickly and effectively to the global optimal solution.
摘要: 为了克服FCM算法对初值的敏感性,提出了一种基于免疫遗传算法的FCM算法。该算法利用免疫系统原理和遗传算子自适应调整的方法(即免疫遗传算法)来改进FCM算法。实验证明该算法能有效解决未成熟收敛的问题,保证了种群的多样性,使聚类问题最终快速、有效地收敛到全局最优解。
CLC Number:
TP311
SUN Yang,LUO Ke. C-Means clustering based on immune genetic algorithm[J]. Computer Engineering and Applications, 2009, 45(23): 152-153.
孙 洋,罗 可. 基于免疫遗传算法的模糊C-均值聚类[J]. 计算机工程与应用, 2009, 45(23): 152-153.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2009.23.042
http://cea.ceaj.org/EN/Y2009/V45/I23/152