Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (1): 121-123.DOI: 10.3778/j.issn.1002-8331.2009.01.037

• 网络、通信、安全 • Previous Articles     Next Articles

Snort network intrusion detection based on data mining techniques

WANG Jian-jun,LUO Ke,ZHAO Zhi-xue   

  1. Institute of Computer and Communication Engineering,Changsha University of Science and Technology,Changsha 410076,China
  • Received:2007-12-26 Revised:2008-03-03 Online:2009-01-01 Published:2009-01-01
  • Contact: WANG Jian-jun

基于数据挖掘的SNORT网络入侵检测系统

王建军,罗 可,赵志学   

  1. 长沙理工大学 计算机与通信工程学院,长沙 410076
  • 通讯作者: 王建军

Abstract: This paper reviews intrusion detection,data mining techniques and analyses the snort NIDS in depth.Then a snort-based NIDS model enhanced with data mining techniques is developed,with efforts given to its key modules in abnormal detection engine,the cluster analysis module based on k-means algorithm.The k-means algorithm modified is adopted better in NIDS.

摘要: 回顾了当前入侵检测技术和数据挖掘技术,对Snort网络入侵检测系统进行了深入的剖析;然后在Snort的基础上构建了基于数据挖掘的网络入侵检测系统模型;重点设计和实现了其中基于k-means算法的异常检测引擎和聚类分析模块,并对k-means算法进行了改进,使其更适用于网络入侵检测系统。