Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (10): 151-153.DOI: 10.3778/j.issn.1002-8331.2009.10.045

• 数据库、信号与信息处理 • Previous Articles     Next Articles

Extended research on belief network retrieval model

WU Shu-fang1,LIU Yong-li2,ZHU Jie3,PAN Shi-ying4   

  1. 1.Department of Information Engineering,Hebei Software Institute,Baoding,Hebei 071000,China
    2.Department of Information Engineering,Great Wall College,China University of Geosciences,Baoding,Hebei 071000,China
    3.Department of Information Management,Central Institute for Correctional Police,Baoding,Hebei 071000,China
    4.Institute of Career Technology,Hebei Normal University,Shijiazhuang 050031,China
  • Received:2008-02-26 Revised:2008-05-12 Online:2009-04-01 Published:2009-04-01
  • Contact: WU Shu-fang

信念网络检索模型扩展研究

吴树芳1,刘永立2,朱 杰3,潘世英4   

  1. 1.河北软件职业技术学院 信息工程系,河北 保定 071000
    2.中国地质大学 长城学院 信息工程系,河北 保定 071000
    3.中央司法警官学院 信息管理系,河北 保定 071000
    4.河北师范大学 职业技术学院,石家庄 050031
  • 通讯作者: 吴树芳

Abstract: Combining distinct sources of evidential knowledge in support of a ranking can improve the retrieval performance effectively.Adopting synonym-based evidence to extend the basic belief network can obtain an extended belief network retrieval model.The extended model uses different strategies to combine evidences leads to different ranking computation formulas,then influences the retrieval performance.This paper gives conjunctive combining algorithm based on disjunctive combining algorithm,and some proper modifications are given as to the conjunctive combining algorithm.Experimental results indicate that the retrieval performance based on conjunctive algorithmis higher than that based on disjunctive algorithm.

摘要: 依据《同义词词林(扩展版)》,以初始查询的同义词为证据扩展基本信念网络,得到扩展的信念网络检索模型,扩展模型采用不同的归并方法将得到不同的排序计算式。在析取归并算法的基础上,给出了合取归并算法,并对其进行了合理的修正。实验证明,合取情况下的检索性能高于析取情况。