Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (4): 120-124.DOI: 10.3778/j.issn.1002-8331.2010.04.038
• 数据库、信号与信息处理 • Previous Articles Next Articles
WANG Jian-guo1,3,WANG Xiao-tong1,3,XU Xiao-gang2,3
Received:
Revised:
Online:
Published:
Contact:
王建国1,3,王孝通1,3,徐晓刚2,3
通讯作者:
Abstract: Empirical Mode Decomposition(EMD) is a decomposition algorithm which is used to analyze nonlinear and time-varying signal.Different from the traditional signal analysis method,the decomposition is data-driven and self-adaptive.A review work about the current development of one dimensional EMD and bidimensional EMD is introduced.At first,some basic concepts,main algorithms and applications are described.Then the advantages and shortages of EMD are discussed.At the end of the paper,several problems which are waiting to be solved are listed.
摘要: 经验模式分解(Empirical Mode Decomposition,EMD)是一种完全由数据驱动的自适应非线性时变信号分解方法,它将数据分解成具有物理意义的几个内蕴模式函数分量。介绍了一维EMD、二维EMD的基本概念、主要算法及其主要应用,指出了EMD的主要优点和缺点,给出了EMD研究与应用的发展趋势。
CLC Number:
TP391
WANG Jian-guo1,3,WANG Xiao-tong1,3,XU Xiao-gang2,3. Empirical Mode Decomposition and its application[J]. Computer Engineering and Applications, 2010, 46(4): 120-124.
王建国1,3,王孝通1,3,徐晓刚2,3. 经验模式分解及其应用研究[J]. 计算机工程与应用, 2010, 46(4): 120-124.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2010.04.038
http://cea.ceaj.org/EN/Y2010/V46/I4/120