Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (6): 213-215.

• 工程与应用 • Previous Articles     Next Articles

Application of Markov random field based on Particle Swarm Optimization for medical image segmentation

WEI Ben-zheng1,2,YIN Yi-long1   

  1. 1.School of Computer Science and Technology,Shandong University,Ji’nan 250061,China
    2.Institute of Science and Technology,Shandong University of Traditional Chinese Medicine,Ji’nan 250014,China
  • Received:2007-06-25 Revised:2007-08-20 Online:2008-02-21 Published:2008-02-21
  • Contact: WEI Ben-zheng

基于PSO的Markov随机场在医学图像分割中的应用

魏本征1,2,尹义龙1   

  1. 1.山东大学 计算机科学与技术学院,济南 250061
    2.山东中医药大学 理工学院,济南 250014
  • 通讯作者: 魏本征

Abstract: This article discusses the application of Markov Random Field (MRF) based on Particle Swarm Optimization (PSO) for Magnetic Resonance Image(MRI) segmentation.Imagery segmentation of MRF-PSO model based on MRF is proposed.The Maximum A Posteriori (MAP) global best solution of segmentations will be got though MRF by using the method of PSO,which describes image data relations by local correlations instead of global image possibility distributions.Finally,results are given.It shows that the MRF-PSO method is an effective method in image segmentation.

摘要: 研究了应用粒子群优化算法(PSO)优化Markov随机场方法对磁共振图像进行分割的算法。建立了基于马尔可夫随机场的图像分割模型,针对马尔可夫随机场图像模型的局部相关特性和最大后验概率估计,将粒子群优化算法应用于该模型,快速获得图像分割目标的全局最优解。实验数据表明该方法的高效性。