Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (6): 178-181.
• 数据库与信息处理 • Previous Articles Next Articles
SHAN Shi-min,YU Hong,ZHANG Ye-jia-cheng,LIU Xin-yue
Received:
Revised:
Online:
Published:
Contact:
单世民,于 红,张业嘉诚,刘馨月
通讯作者:
Abstract: Cluster analysis is one of the most important fields of data mining.K-means algorithm has important value in data mining.K-means must be given the number of clusters and it forms local convergence easily.So a new clustering algorithm,K-means based on the Shared Nearest Neighbor(KSNN),is designed.KSNN finds the core nodes of the data to get the number of clusters and takes it as the parameter for K-means automatically.It conquers the problem that the number of clusters to K-means must be defined by humans,meanwhile it has better global convergence.Experimental results show that KSNN is more effective than K-means,Particle Swarm Optimal(PSO) and multiseed core algorithm(MCA).
摘要: 聚类分析是一种重要的数据挖掘方法。K-means聚类算法在数据挖掘领域具有非常重要的应用价值。针对K-means需要人工设定聚类个数并且易陷入局部极优的缺陷,提出了一种基于最近共享邻近节点的K-means聚类算法(KSNN)。KSNN在数据集中搜索中心点,依据中心点查找数据集个数,为K-means聚类提供参数。从而克服了K-means需要人工设定聚类个数的问题,同时具有较好的全局收敛性。实验证明KSNN算法比K-means、粒子群K-means(pso)以及多中心聚类算法(MCA)有更好的聚类效果。
SHAN Shi-min,YU Hong,ZHANG Ye-jia-cheng,LIU Xin-yue. K-means based on shared nearest neighbor[J]. Computer Engineering and Applications, 2008, 44(6): 178-181.
单世民,于 红,张业嘉诚,刘馨月. 基于最近共享邻居节点的K-means聚类算法[J]. 计算机工程与应用, 2008, 44(6): 178-181.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/
http://cea.ceaj.org/EN/Y2008/V44/I6/178