Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (26): 126-128.DOI: 10.3778/j.issn.1002-8331.2008.26.038
• 数据库、信号与信息处理 • Previous Articles Next Articles
LIANG Bao-hua,ZHANG Bu-qun,LU Jun,CAI Min
Received:
Revised:
Online:
Published:
Contact:
梁宝华,张步群,陆 军,蔡 敏
通讯作者:
Abstract: Association rules discovery is an important research topic in data mining.The article will mine Data-Item set compression to a Boolean Vector Matrix.The algorithm only needs to scan the database one time and rational use of data storage structure so that it would not generate a large number of candidate sets.Experiment results indicate that the algorithm is not only simple,but also has good efficiency compared with the Apriori algorithm.When you mine a large database and long item-set,the mining effect of this way is more visible than the Apriori algorithm.
摘要: 关联规则发现是数据挖掘中的重要研究课题之一。将挖掘的数据事务集压缩到一个布尔型向量矩阵中,只需扫描数据库一次,合理利用数据存储结构,且不会产生大量的候选集。实验表明,该算法不仅实现简单,与经典的Apriori算法进行相比,效率也有大幅提高,特别对大事务集、长项目集数据挖掘效果更为明显。
LIANG Bao-hua,ZHANG Bu-qun,LU Jun,CAI Min. Association rule algorithm based on order vectors inner product[J]. Computer Engineering and Applications, 2008, 44(26): 126-128.
梁宝华,张步群,陆 军,蔡 敏. 基于排序向量内积的关联规则挖掘算法[J]. 计算机工程与应用, 2008, 44(26): 126-128.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2008.26.038
http://cea.ceaj.org/EN/Y2008/V44/I26/126