Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (29): 36-39.DOI: 10.3778/j.issn.1002-8331.2010.29.010
• 研究、探讨 • Previous Articles Next Articles
WANG Hua,LI Yan-ling
Received:
Revised:
Online:
Published:
Contact:
王 华,李艳玲
陕西师范大学 数学与信息科学学院,西安 710062
通讯作者:
Abstract: Based on the methods of spectral analysis and bifurcation theory,the coexistence state of the competition model with a protection zone is investigated.The bifurcation from the semi-trivial is obtained by treating c and η as bifurcation parameters.Through the use of local and global bifurcation theories,sufficient conditions for the existence of positive solution are derived.Moreover,some stability results of the bifurcation solutions are presented.
摘要: 研究了一类带保护区域的竞争模型的共存态问题,利用分歧理论和谱分析的方法,分别以c、η为分歧参数,讨论了发自半平凡解的局部分支解的存在性,并将其局部分支延拓为整体分支,从而得到正平衡解存在的充分条件;同时判定了局部分支解的稳定性。
CLC Number:
O175.26
WANG Hua,LI Yan-ling. Global bifurcation and stability for competition model with protection zone[J]. Computer Engineering and Applications, 2010, 46(29): 36-39.
王 华,李艳玲. 带保护区域的竞争模型的全局分支及稳定性[J]. 计算机工程与应用, 2010, 46(29): 36-39.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2010.29.010
http://cea.ceaj.org/EN/Y2010/V46/I29/36
Parameter inversion model for two dimensional parabolic equation using Quasi-Newton methods