Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (30): 167-169.DOI: 10.3778/j.issn.1002-8331.2008.30.051

• 数据库、信号与信息处理 • Previous Articles     Next Articles

Algorithm of frequent patterns mining based on FS-tree

SHI Min-yu,MA Hui-min,TANG Shu-ke   

  1. School of Management,Huazhang University of Science and Technology,Wuhan 430074,China
  • Received:2008-03-06 Revised:2008-05-23 Online:2008-10-21 Published:2008-10-21
  • Contact: SHI Min-yu

基于FS-tree的频繁模式挖掘算法

史旻昱,马辉民,唐述科   

  1. 华中科技大学 管理学院,武汉 430074

  • 通讯作者: 史旻昱

Abstract: Association rule mining which is used to find the correlation of items is an important research direction in data mining.FP-growth algorithm greatly reduces the search time without generating candidate itemsets by constructing FP-tree to find frequent itemsets.The drawback of it is taking a lot of memory space.Based on the thinking of FP-growth algorithm,an algorithm for mining frequent patterns based on FS-tree(1 item frequent sub-tree) is proposed.The algorithm reduces the space complexity significantly by splitting FP-tree into some FS-trees.The experiments show that the algorithm is effective.

摘要: 关联规则挖掘是数据挖掘中的一个重要研究方向,用于发现项集之间的关联性。FP-growth算法通过构造FP-tree产生频繁集,由于其不生成候选集从而大大降低了搜索开销,其缺点是占用大量的内存空间。基于FP-growth的算法思想,提出基于FS-tree(频繁1-项子树)的频繁模式挖掘算法,通过将FP-tree拆分为多棵FS-tree,使算法的空间复杂度明显减小。实验表明,该算法是有效的。