Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (21): 91-93.DOI: 10.3778/j.issn.1002-8331.2009.21.026

• 数据库、信息处理 • Previous Articles     Next Articles

Improved lexical semantic tendentiousness recognition computing

YANG Yu-bing,WU Xian-wei   

  1. Electronic Information Branch,Ningbo Dahongying College,Ningbo,Zhejiang 315175,China
  • Received:2009-03-03 Revised:2009-04-29 Online:2009-07-21 Published:2009-07-21
  • Contact: YANG Yu-bing

改进的基于知网词汇语义褒贬倾向性计算

杨昱昺,吴贤伟   

  1. 宁波大红鹰学院 电子信息学院,浙江 宁波 315175
  • 通讯作者: 杨昱昺

Abstract: Lexical semantic tendentiousness recognition computing is the base of the sentence tendentiousness,and the sentence tendentiousness recognition is the text tendentiousness recognition and the chapter structure tendentiousness recognition foundation.Based on HowNet lexical semantic similarity computing,according to the current vocabulary appraise tendentious theory used by the method of computing similarity between words and benchmark words,from appraise benchmark words and computing formula,the paper puts forward an improved method.With experiment validation,in the same pair of benchmark words,accuracy rate has greatly been improved,arriving at 98.94%,there is some value in practical application.

Key words: semantic similarity, tendentiousness recognition, HowNet, appraise benchmark words

摘要: 词汇语义褒贬倾向性研究是句子褒贬倾向性识别的基础,而句子褒贬倾向性识别又是文本倾向性识别和篇章结构褒贬倾向性识别的基础。以《知网》的词汇语义相似度计算为基础,针对目前采用计算基准词对与词汇相似度的方法识别词汇褒贬倾向性理论,从褒贬基准词和计算公式入手,提出了改进办法。实验证明,在同样基准词对下,准确率得到了很大的提高,达到98.94%,具有实际应用价值。

关键词: 语义相似度, 倾向性识别, 知网, 褒贬基准词