Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (16): 34-36.
• 理论研究 • Previous Articles Next Articles
MO Fu-qiang,WANG Hao,YAO Hong-liang,YU Kui
Received:
Revised:
Online:
Published:
Contact:
莫富强,王 浩,姚宏亮,俞 奎
通讯作者:
Abstract: To overcome shortcomings present in the SEM in the presence of missing values data sets such as lower precision and slow convergent speed,KB-SEM is proposed by introducing domain knowledge.A tabu list derived from collecting domain expert knowledge synthesized by using D-S evidence theory is embedded in the SEM to constrain and guide the searching path,and to decrease the searching space.Experimental result shows that KB-SEM can improve the precision and the speed effectively,and to some extent avoid subjective bias and disturbance of noise in the data sets.
Key words: Bayesian Networks(BNs), domain knowledge, missing data, KB-SEM
摘要: 针对SEM算法在缺省数据学习中存在精度偏低和收敛速度缓慢的问题,通过将领域知识引入到SEM算法中,提出了KB-SEM算法,该算法首先用D-S证据理论综合领域知识,然后将采集的知识以禁忌表的方式嵌入SEM中来限制和引导算法的搜索路径,缩小算法的搜索空间。实验表明,KB-SEM算法能有效地提高算法的学习精度和时间性能,且能在一定程度上避免主观偏见和数据噪音的干扰。
关键词: 贝叶斯网络, 领域知识, 缺省数据, KB-SEM
MO Fu-qiang,WANG Hao,YAO Hong-liang,YU Kui. Domain knowledge based Bayesian networks structure learning algorithm[J]. Computer Engineering and Applications, 2008, 44(16): 34-36.
莫富强,王 浩,姚宏亮,俞 奎. 基于领域知识的贝叶斯网络结构学习算法[J]. 计算机工程与应用, 2008, 44(16): 34-36.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/
http://cea.ceaj.org/EN/Y2008/V44/I16/34