Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (14): 128-132.DOI: 10.3778/j.issn.1002-8331.2009.14.039

• 数据库、信号与信息处理 • Previous Articles     Next Articles

Objective function of semi-supervised FCM clustering algorithm

LI Chun-fang1,3,PANG Ya-jing2,QIAN Li-pu3,GAO Ai-hua4   

  1. 1.School of Automation and Electrical Engineering,Beihang University,Beijing 100083,China
    2.School of Architecture Engineering,Hebei University of Science and Technology,Shijiazhuang 050018,China
    3.Network Center,Hebei Institute of Physical Education,Shijiazhuang 050041,China
    4.School of E&A,Hebei Normal University of Science and Technology,Qinhuangdao,Hebei 066004,China
  • Received:2008-03-17 Revised:2008-07-23 Online:2009-05-11 Published:2009-05-11
  • Contact: LI Chun-fang

半监督FCM聚类算法目标函数研究

李春芳1,3,庞雅静2,钱丽璞3,高爱华4   

  1. 1.北京航空航天大学 自动化科学与电气工程学院,北京 100083
    2.河北科技大学 建筑工程学院,石家庄 050018
    3.河北体育学院 网络中心,石家庄 050041
    4.河北科技师范学院 欧美学院,河北 秦皇岛 066004
  • 通讯作者: 李春芳

Abstract: Analyze the physical interpretation of objective function of semi-supervised FCM algorithm and the coefficient α.Illustrate that Stutz’s modification to the objective function provided by Pedrycz is more clear,and when α=1,0,the SS-FCM degrades to FCM.Provide the corresponding alternatively optimizing algorithm of SS-FCM.The experimental results show that:(1)Modified algorithm has same semi-supervised function and has more clear physical interpretation.(2)Using FCM algorithm to assign membership for labeled samples is better than using random number.(3)SS-FCM with fuzzy covariance and a small number of good-selected labeled samples can effectively improve the accuracy and convergence rate.

Key words: Fuzzy C-Means(FCM) algorithm, semi-supervised clustering, objective function, fuzzy covariance

摘要: 分析了现有半监督FCM算法目标函数的物理意义和平衡系数α的选取,说明Stutz对Pedrycz目标函数的修改使半监督的物理意义更清楚,它在α=1,0时均退化为标准FCM算法,给出了修改后SS-FCM算法的交替求解过程。实验结果:(1)修改算法与Pedrycz算法有相同的半监督作用和清楚的物理解释;(2)对labeled样本采用FCM算法赋值比用随机数的收敛稳定性高;(3)优选的少量labeled样本,使用模糊协方差的SS-CFCM算法提高了聚类准确性和收敛速度。

关键词: 模糊C均值(FCM)算法, 半监督聚类, 目标函数, 模糊协方差