Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (33): 218-221.DOI: 10.3778/j.issn.1002-8331.2009.33.069

• 工程与应用 • Previous Articles     Next Articles

Multi-physiology information fusion for emotion distinction in smart clothing

WU Xue-kui1,REN Li-hong1,DING Yong-sheng1,2,WU Yi-zhi1   

  1. 1.College of Information Sciences and Technology,Donghua University,Shanghai 201620,China
    2.Engineering Research Center of Digitized Textile & Fashion Technology,Ministry of Education,Shanghai 201620,China
  • Received:2008-07-01 Revised:2008-09-18 Online:2009-11-21 Published:2009-11-21
  • Contact: WU Xue-kui

面向智能服装的多生理信息融合的情绪判别

吴学奎1,任立红1,丁永生1,2,吴怡之1   

  1. 1.东华大学 信息科学与技术学院,上海 201620
    2.数字化纺织服装技术教育部工程研究中心,上海 201620
  • 通讯作者: 吴学奎

Abstract: Human body is a complex multi-functional system.By collecting a variety of human physiological signals as a source of information,and introducing respiratory sinus arrhythmia,multi-physiology information fusion based emotion distinction model is established.Through the smart clothing system,based on three types of physiological signals such as ECG,respiration and temperature,the method of SVM for multi-physiology information fusion is used.Based on the emotional discriminant model,the emotion recognition rate reaches 72%,which will have a good medical diagnosis value and wide range of application.

Key words: smart clothing, emotional discrimination, Respiratory Sinus Arrhythmia(RSA), physiological information fusion, support vector machine

摘要: 人体是一个复杂的多功能系统,采集人体的多种生理信号将其作为信息源,并引入呼吸性窦性心律不齐的生理现象来建立基于多生理信息融合的情绪判别模型,通过可穿戴智能服装系统对心电、呼吸、体温三种生理信号进行特征提取和特征分类,采用支持向量机的方法进行多生理信息融合,在此基础上建立面向智能服装的多生理信息融合的情绪判别模型,对情绪的识别率达到72%,具有良好的医疗诊断价值和广泛的应用前景。

关键词: 智能服装, 情绪判别, 呼吸性窦性心律不齐(RSA), 生理信息融合, 支持向量机

CLC Number: