Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (4): 56-58.DOI: 10.3778/j.issn.1002-8331.2009.04.016

• 研究、探讨 • Previous Articles     Next Articles

Depth genetic algorithm solve ultra-large-scale Traveling Salesman Problem

ZHAO Lian-peng1,2,JIN Xi-zi2,3,WANG Na2,YAO Ming-hai1,2   

  1. 1.Public Computer-Education Department,Bohai University,Jinzhou,Liaoning 121000,China
    2.College of Computer,Northeast Normal University,Changchun 130117,China
    3.School of Computer Science and Technology,Jilin University,Changchun 130117,China
  • Received:2008-09-02 Revised:2008-12-12 Online:2009-02-01 Published:2009-02-01
  • Contact: ZHAO Lian-peng

求解超大规模旅行商问题的纵深遗传算法

赵连朋1,2,金喜子2,3,王 娜2,姚明海1,2   

  1. 1.渤海大学 公共计算机教研部,辽宁 锦州 121000
    2.东北师范大学 计算机学院,长春 130117
    3.吉林大学 计算机科学与技术学院,长春 130117
  • 通讯作者: 赵连朋

Abstract: Many evolutionary algorithms are sensitive for initial parameters design,the different Traveling Salesman Problem(TSP) need for corresponding adjustment for the initial parameters.And the local optimal solution is easy when you solve the issue of ultra-large-scale TSP problem.Therefore,this paper presents a programme about depth genetic algorithms to solve TSP problems and improved function,variation function,cross-function in order to resolve the question.For example,pr1002(259 269.09),pla85900(152 394 182.43) and brd14051(489 842.93) have a relatively good optimal solution.Experimental results show that the algorithm has great advantages.

Key words: Traveling Salesman Problem(TSP), evolutionary algorithm, Depth Genetic Algorithm(GDA), optimal solution

摘要: 很多演化算法对初始参数设计都敏感,针对于不同的旅行商问题(Traveling Salesman Problem,TSP)实例需要进行相应的初始参数调整。并且,在求解超大规模TSP问题时容易陷于局部最优解。提出了一种纵深遗传算法的TSP问题求解方案,以及新的改良函数、变异函数和交叉函数。对pr1002(259 269.09)、pla85900(152 394 182.43)和brd14051(489 842.93)等实例都获得了比较好的优化解。实验表明该方案在求解TSP问题方面具有优势。

关键词: 旅行商问题, 演化算法, 纵深遗传算法, 最优解