Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (31): 47-50.DOI: 10.3778/j.issn.1002-8331.2008.31.013

• 理论研究 • Previous Articles     Next Articles

Adaptive mutation particle swarm algorithm using the complex method

FU Qiang   

  1. College of Science and Technology,Ningbo University,Ningbo,Zhejiang 315211,China
  • Received:2008-04-28 Revised:2008-07-08 Online:2008-11-01 Published:2008-11-01
  • Contact: FU Qiang

一种引入复合形算子的变异粒子群算法

符 强   

  1. 宁波大学 科学技术学院,浙江 宁波 315211
  • 通讯作者: 符 强

Abstract: To deal with the problem of premature convergence,slow convergence velocity,a novel Particle Swarm Optimization(PSO) algorithm is proposed.At the beginning of the evolution,PSO can search global area and find the local range quickly,and then,complex method would locate the extremum in the local range rapidly.The self-adaptive mutation inertia weight is used in the whole evolvement to break away from the local extremum,which can effectively solve the premature convergence problem.The experiment results of two classic benchmark functions show that the algorithm can not only significantly improve the convergence velocity and precision in the evolutionary optimization,but also effectively enhance the global optimization power.

Key words: Particle Swarm Optimization(PSO), complex method, self-adaptive mutation

摘要: 针对粒子群算法存在的收敛速度较慢和早熟收敛两大难题提出了一种新的改进型粒子群算法:搜索初期由粒子群算法进行全局寻优,当判断粒子群体已经进入局部最优区域时,引入复合形算法迅速达到局部收敛,从而有效地提高粒子群算法的局部搜索能力。同时引入自适应变异惯性权重提高摆脱局部最优的能力,增加种群的多样性。通过典型优化函数的实验验证,该算法是一种兼顾局部性能和全局搜索能力的高效算法。

关键词: 粒子群算法, 复合形算法, 自适应变异