Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (2): 176-178.DOI: 10.3778/j.issn.1002-8331.2009.02.051
• 图形、图像、模式识别 • Previous Articles Next Articles
YU Xue-fei,LI Bin,CHEN Wu-fan
Received:
Revised:
Online:
Published:
Contact:
余学飞,李 彬,陈武凡
通讯作者:
Abstract: A novel approach to the segmentation of Multiple Sclerosis(MS) lesions in T2-weighted Magnetic Resonance(MR) images is presented.According to the characteristic of MS lesions show the same high brightness with CerebroSpinal Fluid(CSF) in T2-weighted images,combining the strengths of the kernel fuzzy C-means algorithm and morphology characteristics of MS lesion tissues,the segmentation of MS lesions based on kernel fuzzy C-means algorithm is presented.The modified kernel fuzzy C-means algorithm is used to basic segmentation.Then the MS lesions are extracted by morphological method.The MS segmentation in simulated T2-weighted MR images show that the proposed algorithm can provide a powerful segmentation.
Key words: segmentation of image, kernel fuzzy C-means, multiple sclerosis lesions
摘要: 提出了一种针对多发性硬化症病灶T2加权脑部磁共振(MR)图像的分割算法。根据多发性硬化症病灶和脑脊液在T2加权像上同表现为高亮度信号的特点,把模糊C均值分割算法与形态学方法相结合,提出了基于核模糊C均值的多发性硬化症病灶分割算法。该算法首先用改进的核模糊C均值算法做基础分割,再用形态学方法提取出多发性硬化症病灶得到最终分割结果。通过对多发性硬化症模拟脑部MR图像的分割结果表明,算法能够比较准确地分割多发性硬化症病灶。
关键词: 图像分割, 核模糊C均值, 多发性硬化症
YU Xue-fei,LI Bin,CHEN Wu-fan. Novel segmentation algorithm for multiple sclerosis lesions in MR images[J]. Computer Engineering and Applications, 2009, 45(2): 176-178.
余学飞,李 彬,陈武凡. 多发性硬化症MR图像分割新算法研究[J]. 计算机工程与应用, 2009, 45(2): 176-178.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2009.02.051
http://cea.ceaj.org/EN/Y2009/V45/I2/176