Computer Engineering and Applications ›› 2010, Vol. 46 ›› Issue (35): 173-176.DOI: 10.3778/j.issn.1002-8331.2010.35.050

• 图形、图像、模式识别 • Previous Articles     Next Articles

Image fuzzy clustering analysis based on FCM and genetic algorithms

LOU Yin-xia1,CHENG Ming1,WEN Gao-jin2,QUAN Hui-yun1   

  1. 1.College of Mathematics and Computer Science,Hunan Normal University,Changsha 410081,China
    2.Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen,Guangdong 518055,China
  • Received:2009-06-03 Revised:2009-08-03 Online:2010-12-11 Published:2010-12-11
  • Contact: LOU Yin-xia

基于FCM和遗传算法的图像模糊聚类分析

娄银霞1,程 铭1,文高进2,全惠云1   

  1. 1.湖南师范大学 数学与计算机科学学院,长沙 410081
    2.中国科学院 深圳先进技术研究院,广东 深圳 518055
  • 通讯作者: 娄银霞

Abstract: Cluster analysis has great importance and broad application prospects in the fields of pattern recognition and image processing.Commonly used method of cluster analysis is the fuzzy C-means algorithm(FCM).The FCM algorithm easily traps into local optimal solution.An algorithm combining FCM with genetic algorithms is introduced for image fuzzy clustering analysis.The input image texture features are extracted,and the dimension reduction of extracted feature vector is processed through principal component analysis,the image of the cluster analysis algorithm complexity is reduced and the accuracy of the results is improved.Image data of the fuzzy cluster is analyzed combined with genetic algorithm FCM.The experiment results show that this method can get a better clustering effect.

Key words: fuzzy C-Means clustering, genetic algorithms, fuzzy clustering, clustering analysis

摘要: 聚类分析在模式识别和图像处理领域中有着极为重要的意义和广泛的应用前景。常用的聚类分析的方法是模糊C均值算法(FCM),但是FCM算法容易陷入局部最优解。提出一种基于FCM和遗传算法对图像进行模糊聚类分析的方法。对输入图像进行纹理特征提取,通过主成分分析法对提取的特征向量进行降维处理,降低图像聚类分析算法的复杂度,提高结果的精确度,结合FCM和遗传算法对图像数据进行模糊聚类分析。实验结果表明该方法可以得到较好的分类效果。

关键词: 模糊C均值聚类, 遗传算法, 模糊聚类, 聚类分析

CLC Number: