Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (11): 45-48.DOI: 10.3778/j.issn.1002-8331.2009.11.014

• 研究、探讨 • Previous Articles     Next Articles

Parallel study of quantum-behaved particle swarm algorithm

WANG Xiao-gen1,XI Mao-long2,XU Wen-bo2   

  1. 1.School of Information Technology,Southern Yangtze University,Wuxi,Jiangsu 214422,China
    2.School of Education,Southern Yangtze University,Wuxi,Jiangsu 214422,China
  • Received:2008-03-04 Revised:2008-06-10 Online:2009-04-11 Published:2009-04-11
  • Contact: WANG Xiao-gen

具有量子行为粒子群优化算法的并行化研究

王小根1,奚茂龙2,须文波2   

  1. 1.江南大学 教育学院,江苏 无锡 214422
    2.江南大学 信息学院,江苏 无锡 214422
  • 通讯作者: 王小根

Abstract: On the base of quantum-behaved particle swarm algorithm,a new parallel method on quantum-behaved particle swarm algorithm is proposed by the influence of the implement of genetic algorithm.Due to the long time for communication,bottleneck will appear on parallel tests.It amends the communication by reducing the communication cycle.The comparison of PQPSO,PEA,PSEA and PPSO based on benchmark function is given.

Key words: parallel, particle swarm optimization, quantum

摘要: 在研究了具有量子行为粒子群算法的基础上,受遗传算法并行化的启发,对具有量子行为的粒子群算法提出并实现了新的并行化策略。针对通信时间过长的问题,提出了改进方法。最后通过benchmark测试函数,将并行化量子粒子优化算法和二进制遗传算法、十进制遗传算法、粒子群优化算法的并行化方法进行了仿真比较,并对结果进行了分析。

关键词: 并行, 粒子群优化算法, 量子化