Computer Engineering and Applications ›› 2009, Vol. 45 ›› Issue (16): 204-207.DOI: 10.3778/j.issn.1002-8331.2009.16.060

• 图形、图像、模式识别 • Previous Articles     Next Articles

Clustering and dynamic RBF networks for pattern recognition applied research

ZHANG DE-feng   

  1. Department of Computer Science,Foshan University,Foshan,Guangdong 528000,China
  • Received:2009-02-25 Revised:2009-04-02 Online:2009-06-01 Published:2009-06-01
  • Contact: ZHANG DE-feng

聚类与动态RBF网络的模式识别应用研究

张德丰   

  1. 佛山科学技术学院 计算机系,广东 佛山 528000
  • 通讯作者: 张德丰

Abstract: This paper uses the PCA method to extract facial features further mapped to the Fisher optimal sub-space,in this sub-space,between-class distribution within the same distribution ratio of the maximum,then puts forward a novel supervised clustering method,uses limited training data information to select the RBF structure and initial parameters.Finally,a hybrid learning algorithm to train the RBF neural networks,makes the gradient descent optimization algorithm greatly reduce the search space dimension.In ORL database the simulation results demonstrate that this method both in the classification error rate or the efficiency in the study can show excellent performance.

Key words: neural networks, radial basis, principal component analysis, linear discriminant

摘要: 通过PCA方法来提取人脸特征,这些特征进一步映射到Fisher最优子空间,在这个子空间,类间分布同类内分布的比率最大。然后,提出一种新颖的有监督的聚类方法,利用有限的训练数据信息来选择RBF的结构和初始参数。最后,提出了一种混合的学习算法来训练RBF神经网络,使得在梯度下降寻优算法中大大降低了搜索空间的维数。在ORL数据库上进行的仿真结果表明,这个方法无论是在分类的错误率上还是在学习的效率上都能表现出极好的性能。

关键词: 神经网络, 径向基, 主元分析法, 线性判别式