Computer Engineering and Applications ›› 2008, Vol. 44 ›› Issue (13): 27-29.

• 博士论坛 • Previous Articles     Next Articles

Novel handwritten numeral recognition based on texture classification

YANG Zhi-hua   

  1. Information Science School,Guangdong University of Business Studies,Guangzhou 510320,China
  • Received:2007-12-28 Revised:2008-02-18 Online:2008-05-01 Published:2008-05-01
  • Contact: YANG Zhi-hua

一种基于纹理识别的手写数字识别方法

杨志华   

  1. 广东商学院 信息学院,广州 510320
  • 通讯作者: 杨志华

Abstract: A novel handwritten numeral recognition based on texture classification is presented.A handwritten numeral image is normalized to a fixed size and rotated by random angle degrees to create images which are used to form a texture image,then the handwritten numeral recognition is implemented by texture classification.The main frequency centers along multi-directions are extracted to form feature vector for a texture image and the minimum distance classifier is employed to classify the textures.Experiments show encouraging results.

Key words: handwritten numerals recognition, feature extraction, Hilbert-Huang transform, empirical mode decomposition

摘要: 提出了一种新的手写数字识别方法,通过将一幅规范化手写数字图像做任意旋转和简单排列,形成纹理图像,将手写数字识别问题转换为纹理识别问题。然后提取纹理图像在不同方法的主频中心作为特征向量,用最小距离分类器进行分类。实验表明,该方法不仅具有高的识别率和低的特征维数,而且具有旋转、伸缩和平移不变性。

关键词: 手写数字识别, 特征提取, Hilbert-Huang变换, 经验模式分解(EMD)