[1] CABRAL A, WALDO J. Designing large-scale wireless sensor networks for urban environmental sensing[C]//Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing. New York: ACM, 2023: 253-257.
[2] CORMODE G, GAROFALAKIS M, MUTHUKRISHNAN S, et al. Holistic aggregates in a networked world: distributed tracking of approximate quantiles[C]//Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2005: 25-36.
[3] CARNEY D, ?ETINTEMEL U, CHERNIACK M, et al. Monitoring streams: a new class of data management applications[C]//Proceedings of the 28th International Conference on Very Large Data Bases, 2002: 215-226.
[4] WIDOM J. Query processing, resource management, and approximation in a data stream management system[C]//Proceedings of the 2003 CIDR Conference, 2003.
[5] JUANG P, OKI H, WANG Y, et al. Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet[J]. ACM SIGPLAN Notices, 2002, 37(10): 96-107.
[6] MADDEN S R, FRANKLIN M J, HELLERSTEIN J M, et al. TinyDB: an acquisitional query processing system for sensor networks[J]. ACM Transactions on Database Systems, 2005, 30(1): 122-173.
[7] GREENWALD M, KHANNA S. Space-efficient online computation of quantile summaries[J]. ACM SIGMOD Record, 2001, 30(2): 58-66.
[8] CORMODE G, MUTHUKRISHNAN S. What’s hot and what’s not: tracking most frequent items dynamically[C]//Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York: ACM, 2003: 296-306.
[9] MANKU G S, MOTWANI R. Approximate frequency counts over data streams[C]//Proceedings of the 28th International Conference on Very Large Data Bases, 2002: 346-357.
[10] GANGULY S, GAROFALAKIS M, RASTOGI R. Processing set expressions over continuous update streams[C]//Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2003: 265-276.
[11] ALON N, GIBBONS P B, MATIAS Y, et al. Tracking join and self-join sizes in limited storage[C]//Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York: ACM, 1999: 10-20.
[12] ALON N, MATIAS Y, SZEGEDY M. The space complexity of approximating the frequency moments[C]//Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. New York: ACM, 1996: 20-29.
[13] GILBERT A, KOTIDIS Y, MUTHUKRISHNAN S, et al. Surfing wavelets on streams: one-pass summaries for approximate aggregate queries[C]//Proceedings of the 27th International Conference on Very Large Data Bases, 2001: 79-88.
[14] CHARIKAR M, CHEN K, FARACH-COLTON M. Finding frequent items in data streams[J]. Theoretical Computer Science, 2004, 312(1): 3-15.
[15] BABCOCK B, OLSTON C. Distributed top-k monitoring[C]//Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2003: 28-39.
[16] CORMODE G, YI K. Tracking distributed aggregates over time-based sliding windows[C]//Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. New York: ACM, 2011: 213-214.
[17] GANGULY S, GAROFALAKIS M, RASTOGI R. Tracking set-expression cardinalities over continuous update streams[J]. The VLDB Journal, 2004, 13(4): 354-369.
[18] CORMODE G, MUTHUKRISHNAN S, YI K. Algorithms for distributed functional monitoring[J]. ACM Transactions on Algorithms, 2011, 7(2): 1-20.
[19] WU H, GAN J H, ZHANG R. Learning based distributed tracking[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 2040-2050.
[20] KASHYAP S, RAMAMIRTHAM J, RASTOGI R, et al. Efficient constraint monitoring using adaptive thresholds[C]//Proceedings of the 2008 IEEE 24th International Conference on Data Engineering. Piscataway: IEEE, 2008: 526-535.
[21] SHARFMAN I, SCHUSTER A, KEREN D. A geometric approach to monitoring threshold functions over distributed data streams[J]. ACM Transactions on Database Systems, 2007, 32(4): 23.
[22] CORMODE G. The continuous distributed monitoring model[J]. ACM SIGMOD Record, 2013, 42(1): 5-14.
[23] HUANG Z F, YI K, ZHANG Q. Randomized algorithms for tracking distributed count, frequencies, and ranks[J]. Algorithmica, 2019, 81(6): 2222-2243.
[24] CHUNG F, LU L Y. Concentration inequalities and martingale inequalities: a survey[J]. Internet Mathematics, 2006, 3(1): 79-127.
[25] MCDIARMID C. Concentration[M]//Probabilistic methods for algorithmic discrete mathematics. Berlin, Heidelberg: Springer, 1998: 195-248. |