[1] 刘涛涛, 付钰, 王坤, 等. 基于VAE-CWGAN和特征统计重要性融合的网络流量异常检测方法[J/OL]. 通信学报 [2024-04-26]. http://kns.cnki.net/kcms/detail/11.2102.TN.20240223. 1312.006.html.
LIU T T, FU Y, WANG K, et al. Network traffic anomaly detection method based on VAE-CWGAN and fusion of statistical importance of feature[J/OL]. Journal on Communications [2024-04-26]. http://kns.cnki.net/kcms/detail/11.2102.TN.20240223.1312.006.html.
[2] CHERIF A, BADHIB A, AMMAR H, et al. Credit card fraud detection in the era of disruptive technologies: a systematic review[J]. Journal of King Saud University-Computer and Information Sciences, 2023, 35(1): 145-174.
[3] ED-DAOUDY A, MAALMI K, EL OUAAZIZI A. A scalable and real-time system for disease prediction using big data processing[J]. Multimedia Tools and Applications, 2023, 82(20): 30405-30434.
[4] BERNARDO A, DELLA VALLE E, BIFET A. Incremental rebalancing learning on evolving data streams[C]//Proceedings of the 2020 International Conference on Data Mining Workshops. Piscataway: IEEE, 2020: 844-850.
[5] ELREEDY D, ATIYA A F. A comprehensive analysis of synthetic minority oversampling technique (SMOTE) for handling class imbalance[J]. Information Sciences, 2019, 505: 32-64.
[6] CANO A, KRAWCZYK B. Kappa updated ensemble for drifting data stream mining[J]. Machine Learning, 2020, 109(1): 175-218.
[7] CANO A, KRAWCZYK B. ROSE: robust online self-adjusting ensemble for continual learning on imbalanced drifting data streams[J]. Machine Learning, 2022, 111(7): 2561-2599.
[8] SADEGHI F, VIKTOR H L, VAFAIE P. DynaQ: online learning from imbalanced multi-class streams through dynamic sampling[J]. Applied Intelligence, 2023, 53(21): 24908-24930.
[9] JIAO B T, GUO Y N, GONG D W, et al. Dynamic ensemble selection for imbalanced data streams with concept drift[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(1): 1278-1291.
[10] GOMES H M, BIFET A, READ J, et al. Adaptive random forests for evolving data stream classification[J]. Machine Learning, 2017, 106(9): 1469-1495.
[11] WANG S, MINKU L L, YAO X, et al. Dealing with multiple classes in online class imbalance learning[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016: 2118-2124.
[12] FERREIRA L E B, GOMES H M, BIFET A, et al. Adaptive random forests with resampling for imbalanced data streams[C]//Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-6.
[13] CZARNOWSKI I. Weighted ensemble with one-class classification and over-sampling and instance selection (WECOI): an approach for learning from imbalanced data streams[J]. Journal of Computational Science, 2022, 61: 101614.
[14] BIFET A, HOLMES G, PFAHRINGER B. Leveraging bagging for evolving data streams[C]//Proceedings of the 2010 European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin, Heidelberg: Springer, 2010: 135-150.
[15] LOEZER L, ENEMBRECK F, BARDDAL J P, et al. Cost-sensitive learning for imbalanced data streams[C]//Proceedings of the 35th Annual ACM Symposium on Applied Computing. New York: ACM, 2020: 498-504.
[16] LIU W K, ZHANG H, DING Z Y, et al. A comprehensive active learning method for multiclass imbalanced data streams with concept drift[J]. Knowledge-Based Systems, 2021, 215: 106778.
[17] LIU W K, ZHU C, DING Z Y, et al. Multiclass imbalanced and concept drift network traffic classification framework based on online active learning[J]. Engineering Applications of Artificial Intelligence, 2023, 117: 105607.
[18] HAN M, LI C P, MENG F X, et al. An online ensemble classification algorithm for multi-class imbalanced data stream[J]. Knowledge and Information Systems, 2024, 66(11): 6845-6880.
[19] BIFET A, GAVALDà R. Learning from time-changing data with adaptive windowing[C]//Proceedings of the 2007 SIAM International Conference on Data Mining, 2007: 443-448.
[20] LIU S M, CHEN J H, LIU Z H. An empirical study of dynamic selection and random under-sampling for the class imbalance problem[J]. Expert Systems with Applications, 2023, 221: 119703.
[21] CRUZ R M O, SABOURIN R, CAVALCANTI G D C, et al. META-DES: a dynamic ensemble selection framework using meta-learning[J]. Pattern Recognition, 2015, 48(5): 1925-1935.
[22] CAVALHEIRO L P, DE SOUZA BRITTO A, BARDDAL J P, et al. Dynamically selected ensemble for data stream classification[C]//Proceedings of the 2021 International Joint Conference on Neural Networks. Piscataway: IEEE, 2021: 1-7.
[23] GARCíA S, ZHANG Z L, ALTALHI A, et al. Dynamic ensemble selection for multi-class imbalanced datasets[J]. Information Sciences, 2018, 445: 22-37.
[24] ZHANG Y, DU H L, KE G, et al. Dynamic weighted selective ensemble learning algorithm for imbalanced data streams[J]. The Journal of Supercomputing, 2022, 78(4): 5394-5419.
[25] HAN M, ZHANG X L, CHEN Z Q, et al. Dynamic ensemble selection classification algorithm based on window over imbalanced drift data stream[J]. Knowledge and Information Systems, 2023, 65(3): 1105-1128.
[26] DAI Q, LIU J W, YANG J P. SWSEL: sliding window-based selective ensemble learning for class-imbalance problems[J]. Engineering Applications of Artificial Intelligence, 2023, 121: 105959.
[27] MADKOUR A H, ABDELKADER H M, MOHAMMED A M. Dynamic classification ensembles for handling imbalanced multiclass drifted data streams[J]. Information Sciences, 2024, 670: 120555.
[28] GU X W, ANGELOV P P, SHEN Q. Semisupervised fuzzily weighted adaptive boosting for classification[J]. IEEE Transactions on Fuzzy Systems, 2024, 32(4): 2318-2330.
[29] DAVTALAB R, CRUZ R M O, SABOURIN R. A scalable dynamic ensemble selection using fuzzy hyperboxes[J]. Information Fusion, 2024, 102: 102036.
[30] BRZEZINSKI D, STEFANOWSKI J. Reacting to different types of concept drift: the accuracy updated ensemble algorithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(1): 81-94. |