[1] GALLARDO-SAAVEDRA S, HERNáNDEZ-CALLEJO L, DUQUE-PEREZ O. Technological review of the instrumentation used in aerial thermographic inspection of photovoltaic plants[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 566-579.
[2] PEINADO G A, PLIEGO M A, GARCíA M F P. Survey of maintenance management for photovoltaic power systems[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110347.
[3] HIJJAWI U, LAKSHMINARAYANA S, XU T H, et al. A review of automated solar photovoltaic defect detection systems: approaches, challenges, and future orientations[J]. Solar Energy, 2023, 266: 112186.
[4] 朱得糠, 李东泽, 郭鸿博, 等. 无人机视觉地理定位研究综述[J]. 导航与控制, 2023, 22(3): 21-33.
ZHU D K, LI D Z, GUO H B, et al. A review of vision-based geolocation using UAVs[J]. Navigation and Control, 2023, 22(3): 21-33.
[5] 于越. 基于无人机的航拍车辆目标视觉检测与地理定位系统[D]. 南京: 东南大学, 2019.
YU Y. Vehicle target vision detection and geo-location system based on UAV[D]. Nanjing: Southeast University, 2019.
[6] ZHAO X Y, PU F L, WANG Z H, et al. Detection, tracking, and geolocation of moving vehicle from UAV using monocular camera[J]. IEEE Access, 2019, 7: 101160-101170.
[7] 陈晨, 关棒磊, 尚洋, 等. 受限观测条件下光电对地定位的全局最优化方法[J]. 光学学报, 2023, 43(12): 144-152.
CHEN C, GUAN B L, SHANG Y, et al. Global optimization method for ground target localization of electrooptical platform under limited observation conditions[J]. Acta Optica Sinica, 2023, 43(12): 144-152.
[8] 李梓豪, 匡海鹏, 张泓, 等. 基于数字高程模型高程快速迭代的航拍图像目标定位方法[J]. 中国光学 (中英文), 2023, 16(4): 777-787.
LI Z H, KUANG H P, ZHANG H, et al. A target location method for aerial images through fast iteration of elevation based on DEM[J]. Chinese Optics, 2023, 16(4): 777-787.
[9] NASSAR A, AMER K, ELHAKIM R, et al. A deep CNN-based framework for enhanced aerial imagery registration with applications to UAV geolocalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2018: 1513-1523.
[10] 廖杰, 吴明晖. 一种面向无人机的阵列相机设计及其目标定位算法研究[J]. 农业装备与车辆工程, 2023, 61(3): 95-100.
LIAO J, WU M H. Design of an array camera for UAV and research on target localization algorithm[J]. Agricultural Equipment & Vehicle Engineering, 2023, 61(3): 95-100.
[11] SOHN S, LEE B, KIM J, et al. Vision-based real-time target localization for single-antenna GPS-guided UAV[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(4): 1391-1401.
[12] TAGHAVI E, SONG D, THARMARASA R, et al. Geo-registration and geo-location using two airborne video sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(4): 2910-2921.
[13] MING Y, MENG X Y, FAN C X, et al. Deep learning for monocular depth estimation: a review[J]. Neurocomputing, 2021, 438: 14-33.
[14] EIGEN D, PUHRSCH C, FERGUS R. Depth map prediction from a single image using a multi-scale deep network[J]. arXiv:1406,2283, 2014.
[15] GODARD C, MAC AODHA O, FIRMAN M, et al. Digging into self-supervised monocular depth estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 3828-3838.
[16] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[17] RANFTL R, BOCHKOVSKIY A, KOLTUN V. Vision transformers for dense prediction[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 12179-12188.
[18] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[19] SHAH S, DEY D, LOVETT C, et al. AirSim: high-fidelity visual and physical simulation for autonomous vehicles[C]//Proceedings of the Field and Service Robotics. Cham: Springer International Publishing, 2018: 621-635.
[20] LYU X Y, LIU L, WANG M M, et al. HR-depth: high resolution self-supervised monocular depth estimation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 2294-2301.
[21] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 3-19.
[22] ZHANG N, NEX F, VOSSELMAN G, et al. Lite-Mono: a lightweight CNN and transformer architecture for self-supervised monocular depth estimation[J]. arXiv:2211. 13202, 2022.
[23] FAROOQ B S, ALHASHIM I, WONKA P. AdaBins: depth estimation using adaptive bins[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4008-4017.
[24] KIM D, KA W, AHN P, et al. Global-local path networks for monocular depth estimation with vertical cutdepth[J]. arXiv:2201.07436, 2022. |