[1] 孟琭, 杨旭. 目标跟踪算法综述[J]. 自动化学报, 2019, 45(7): 1244-1260.
MENG L, YANG X. A survey of object tracking algorithms[J]. Acta Automatica Sinica, 2019, 45(7): 1244-1260.
[2] 纪守领, 杜天宇, 邓水光, 等. 深度学习模型鲁棒性研究综述[J]. 计算机学报, 2022, 45(1): 190-206.
JI S L, DU T Y, DENG S G, et al. Robustness certification research on deep learning models: a survey[J]. Chinese Journal of Computers, 2022, 45(1): 190-206.
[3] 陈云芳, 吴懿, 张伟. 基于孪生网络结构的目标跟踪算法综述[J]. 计算机工程与应用, 2020, 56(6): 10-18.
CHEN Y F, WU Y, ZHANG W. Survey of target tracking alogorithnm based on siamese network structure[J]. Computer Engineering and Application, 2020, 56(6): 10-18.
[4] MARVASTI-ZADEH S M, CHEN G L, GHANEI-YAKHDAN H, et al. Deep learning for visual tracking: a comprehensive survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(5): 3943-3968.
[5] 韩旭. 基于前后向跟踪验证的无监督目标跟踪算法研究[D]. 南京: 东南大学, 2021.
HAN X. Research of unsupervised object tracking algorithm based on forward-backward tracking verification[D]. Nanjing: Southeast University, 2021.
[6] WANG N, SONG Y B, MA C, et al. Unsupervised deep tracking[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1308-1317.
[7] YUANG WH, WANG M Y, LIU Q F, et al. Self-supercised object tracking with cycle-consistent siamese network[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020: 10351-10358.
[8] LI B, YAN J J, WU W. et al. High performance visual tracking with siamese region proposal network[C]//Proceedings of the 2018 IEEE/CVF conference on Computer Vision and Pattern Recognition, 2018: 8971-8980.
[9] SIO C H, MA Y J, SHUAI H H, et al. S2SiamFC: self-supervised fully convolution siamese network for visual tracking[C]//Proceedings of the 28th ACM International Conference on Multimedia, 2020: 1948-1957.
[10] ZHENG J L, MA C, PENG H W, et al. Learning to track objects from unlabled videos[C]//Proceedings of the 2021 IEEE International Conference on Computer, 2021: 13546-13555.
[11] SHEN Q H, QIAO L, GUO J Y, et al. Unsupervised learning of accurate siamese tracking[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 8101-8110.
[12] ZHOU Z R, FU H Y, YOU S Y, et al. GUSOT: green and unsupervised single object tracking for long video sequence[C]//Proceedings of the 2022 IEEE Conference on Computer Vision and Pattern Recognition, 2022.
[13] KARAMATH E, KIRBIZ S. MixCycle: unsupervised speech separation via cyclic mixture permutation invariant training[J]. IEEE Signal Processing Letters, 2022, 29: 2637-2641.
[14] CHEN T, KORNBLITH S, NOROUZI M. A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 1597-1607.
[15] TIAN Y L, SUN C, POOLE B, et al. What makes for good views for contrastive Learning[C]//Proceedings of the 34th Conference on Neural Information Processing Systems, 2020.
[16] HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9729-9738.
[17] WU Q Q, WAN J, CHEN A B, et al. Progressive unsupervised learning for visual object tracking[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2993-3002.
[18] GRILL J B, STRUB F, ALTCHE F, et al. Bootstrap your own latent: a new approach to self-supervised learning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1137-1151.
[19] CHEN X L, HE K M. Exploring simple siamese representation learning[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 15750-15758.
[20] SHEN Y H, JI Z W, HONG X P, et al. Noise-aware fully webly supervised object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11326-11335.
[21] YANG L R, MENG F M, LI H L, et al. Learning with noisy class labels for instance segmentation[C]//Proceedings of the 16th European Conference on Computer Vision, 2020.
[22] LIU L, ZHANG J N, HE R F, et al. Learning by analogy: reliable supervision from transformations for unsupervised optical flow estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6489-6498.
[23] CHEN M B, JUNG C. Fully-convolutional siamese networks for object tracking[C]//Proceedings of the 25th IEEE International Conference on Image Processing, 2018.
[24] HE K M, ZHANG X Y, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 25th IEEE International Conference on Image Processing, 2018.
[25] JIANG B R, LUO R X, MAO J Y, et al. Acquisition of localization confidence for accurate object detection[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 816-832.
[26] BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: complementary learners for real-time tracking[C]//Proceedings of the 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2016: 1401-1409.
[27] SHEN Z L, DAI Y C, RAO Z B, et al. CFNet: cascade and fused cost volume for robust stereo[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13906-13915.
[28] DANELLJAN M, BHAT G, KHAN F S, et al. Accurate scale estimation for robust visual tracking[C]//Proceedings of the 2014 British Machine Vision Conference, 2014.
[29] DANELLJAN M, BHAT G, SHAHBAZ K F, et al. ATOM: accurate tracking by overlap maximization[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4660-4669.
[30] ZHU Z, WANG Q, LI B, et al. Distractor-aware siamese networks for visual object tracking[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 103-119.
[31] HENRIQUES F J, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.
[32] DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6638-6646. |