[1] HE S, CHEN Y, XIANG W, et al. Carbon and nitrogen footprints accounting of peanut and peanut oil production in China[J]. Journal of Cleaner Production, 2021, 291: 125964.
[2] 陈立辛, 王磊, 乔印虎, 等. 基于深度学习的花生米缺陷识别分拣方法研究[J]. 包装与食品机械, 2022, 40(3): 65-70.
CHEN L X, WANG L, QIAO Y H, et al. Deep learning-based peanut rice appearance defect identification and sorting method study[J]. Packaging and Food Machinery, 2022, 40(3): 65-70.
[3] 赵志衡, 宋欢, 朱江波, 等. 基于卷积神经网络的花生籽粒完整性识别算法及应用[J]. 农业工程学报, 2018, 34(21): 195-201.
ZHAO Z H, SONG H, ZHU J B, et al. Identification algorithm and application of peanut kernel integrity based on convolution neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 195-201.
[4] DENG L, HAN Z. Image features and DUS testing traits for peanut pod variety identification and pedigree analysis[J]. Journal of the Science of Food and Agriculture, 2019, 99(5): 2572-2578.
[5] VELESACA H O, MIRA R, SUáREZ P L, et al. Deep learning based corn kernel classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 66-67.
[6] BAL F, KAYAALP F. A novel deep learning-based hybrid method for the determination of productivity of agricultural products: apple case study[J]. IEEE Access, 2023, 11: 7808-7821.
[7] GULZAR Y. Fruit image classification model based on MobileNetV2 with deep transfer learning technique[J]. Sustainability, 2023, 15(3): 1906.
[8] BUTUNER R, CINAR I, TASPINAR Y S, et al. Classification of deep image features of lentil varieties with machine learning techniques[J]. European Food Research and Technology, 2023, 249(5): 1303-1316.
[9] 王春龙, 蒋仲铭, 鲍安红. 基于协调注意力的花生荚果品质分级[J]. 食品与机械, 2022, 38(9): 180-184.
WANG C L, JIANG Z M, BAO A H. Classification of peanut quality based on coordinated attention[J]. Food and Machinery, 2022, 38(9): 180-184.
[10] YANG H, NI J, GAO J, et al. A novel method for peanut variety identification and classification by Improved VGG16[J]. Scientific Reports, 2021, 11(1): 15756.
[11] WANG Y, DING Z, SONG J, et al. Peanut defect identification based on multispectral image and deep learning[J]. Agronomy, 2023, 13(4): 1158.
[12] SUN G, WANG S, XIE J. An image object detection model based on mixed attention mechanism optimized YOLOv5[J]. Electronics, 2023, 12(7): 1515.
[13] TERVEN J, CóRDOVA-ESPARZA D M, ROMERO-GONZáLEZ J A. A comprehensive review of yolo architectures in computer vision: from yolov1 to yolov8 and yolo-nas[J]. Machine Learning and Knowledge Extraction, 2023, 5(4): 1680-1716.
[14] ZHANG Z, HE T, ZHANG H, et al. Bag of freebies for training object detection neural networks[J]. arXiv:1902. 04103, 2019.
[15] LIU H, HOU Y, ZHANG J, et al. Research on weed reverse detection methods based on improved you only look once (YOLO)v8: preliminary results[J]. Agronomy, 2024, 14(8): 1667.
[16] XIAO B, NGUYEN M, YAN W Q. Fruit ripeness identification using YOLOv8 model[J]. Multimedia Tools and Applications, 2024, 83(9): 28039-28056.
[17] LUO B, KOU Z, HAN C, et al. A “hardware-friendly” foreign object identification method for belt conveyors based on improved YOLOv8[J]. Applied Sciences, 2023, 13(20): 11464.
[18] WU Y, HAN Q, JIN Q, et al. LCA-YOLOv8-Seg: an improved lightweight YOLOv8-Seg for real-time pixel-level crack detection of dams and bridges[J]. Applied Sciences, 2023, 13(19): 10583.
[19] ZHANG H, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8514-8523.
[20] 马阿辉, 祝双武, 李丑旦, 等. 改进YOLOv5的织物疵点检测算法[J]. 计算机工程与应用, 2023, 59(10): 244-252.
MA A H, ZHU S W, LI C D, et al. Improved fabric defect detection algorithm of YOLOv5[J]. Computer Engineering and Applications, 2023, 59(10): 244-252.
[21] BIE M, LIU Y, LI G, et al. Real-time vehicle detection algorithm based on a lightweight you-only-look-once (YOLOv5n-L)approach[J]. Expert Systems with Applications, 2023, 213: 119108.
[22] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[23] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[24] WU T, DONG Y. YOLO-SE: improved YOLOv8 for remote sensing object detection and recognition[J]. Applied Sciences, 2023, 13(24): 12977.
[25] WANG G, CHEN Y, AN P, et al. UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23(16): 7190. |