[1] 孙海丽, 龙翔, 韩兰胜, 等. 工业物联网异常检测技术综述[J]. 通信学报, 2022, 43(3): 196-210.
SUN H L, LONG X, HAN L S, et al. Overview of anomaly detection techniques for industrial Internet of things[J]. Journal on Communications, 2022, 43(3): 196-210.
[2] ZHANG G Y, GAO X, WANG L, et al. Probabilistic autoencoder with multi?scale feature extraction for multivariate time series anomaly detection[J]. Applied Intelligence, 2023, 53: 15855-15872.
[3] 宁剑, 任怡睿, 林济铿, 等. 基于人工智能及信息融合的电力系统故障诊断方法[J]. 电网技术, 2021, 45(8): 2925-2933.
NING J, REN Y R, LIN J K, et al. Power system fault diagnosis based on artificial intelligence and information fusion[J]. Power System Technology, 2021, 45(8): 2925-2933.
[4] 谢伟, 卢士达, 时宽治, 等. 面向工业物联网时序数据的异常检测方法[J]. 计算机工程与应用, 2024, 60(12): 270-282.
XIE W, LU S D, SHI K Z, et al. Anomaly detection method for industrial IoT timing data[J]. Computer Engineering and Applications , 2024, 60(12): 270-282.
[5] KIM S, CHOI K, CHOI H S, et al. Towards a rigorous evaluation of time-series anomaly detection[C]//Proceedingds of the 36th AAAI Conference on Artificial Intelligence, 2022: 7194-7201.
[6] “中国学科及前沿领域发展战略研究 (2021—2035)”项目组. 中国工业互联网2035发展战略[M]. 北京: 科学出版社, 2023: 193-203.
“Development Strategy of Discipline and Frontier Research in China (2021-2035)” Project Team. China industrial Internet 2035 development strategy[M]. Beijing: Science Press, 2023:193-203.
[7] AHMAD S, LAVIN A, PURDY S, et al. Unsupervised real-time anomaly detection for streaming data[J]. Neurocomputing, 2017, 262: 134-147.
[8] 应斐昊, 邢宁哲, 纪雨彤, 等. 基于KTLAD的电力数据网业务流量异常检测[J]. 北京邮电大学学报, 2017, 40(S1): 108-111.
YING F H, XING N Z, JI Y T, et al. KTLAD based traffic anomaly detection algorithm of electric power data network[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(S1): 108-111.
[9] 段雪源, 付钰, 王坤. 基于VAE-WGAN的多维时间序列异常检测方法[J]. 通信学报, 2022, 43(3): 1-13.
DUAN X Y, FU Y, WANG K. Multi-dimensional time series anomaly detection method based on VAE-WGAN[J]. Journal on Communications, 2022, 43(3): 1-13.
[10] SHEN L, LI Z, KWOK J. Time series anomaly detection using temporal hierarchical one-class network[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS’20), 2020: 13016-13026.
[11] ZHAO H, WANG Y, DUAN J, et al. Multivariate time-series anomaly detection via graph attention network[C]// Proceedingds of the 2020 IEEE International Conference on Data Mining (ICDM 2020), Sorrento, 2020: 841-850.
[12] DENG A, HOOI B. Graph neural network-based anomaly detection in multivariate time series[C]//Proceedingds of the 35th AAAI Conference on Artificial Intelligence (AAAI 2021), 2021: 4027-4035.
[13] HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]//Proceedingds of the 24th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (SIGKDD 2018), London, 2018: 387-395.
[14] CHEN Z, CHEN D, ZHANG X, et al. Learning graph structures with transformer for multivariate time series anomaly detection in IOT[J]. IEEE Internet of Things Journal, 2021, 9(12): 9179-9189.
[15] ZHANG C, SONG D, CHEN Y, et al. A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data[C]//Proceedingds of the 33rd AAAI Conference on Artificial Intelligence (AAAI 2019), Honolulu, 2019: 1409-1416.
[16] ZONG B, SONG Q, MIN M R, et al. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[C]//Proceedingds of the 6th International Conference on Learning Representations (ICLR 2018), Vancouver, 2018.
[17] SU Y, ZHAO Y, NIU C, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]// Proceedingds of the 25th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (SIGKDD 2019), Anchorag, 2019: 2828-2837.
[18] LI Z, ZHAO Y, HAN J, et al. Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding[C]//Proceedingds of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (SIGKDD 2021), 2021: 3220-3230.
[19] ZHOU B, LIU S, HOOI B, et al. BeatGAN: anomalous rhythm detection using adversarially generated time series[C]//Proceedingds of the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019), Macao, China, 2019: 4433-4439.
[20] AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD: unsupervised anomaly detection on multivariate time series[C]//Proceedingds of the 26th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (SIGKDD 2020). New York, N Y: ACM, 2020: 3395-3404.
[21] TULI S, CASALE G, JENNINGS N R. TranAD: deep transformer networks for anomaly detection in multivariate time series data[C]// Proceedingds of the 48th International Conference on Very Large Databases (VLDB 2022), Sydney, 2022.
[22] XU J, WU H, WANG J, et al. Anomaly transformer: time series anomaly detection with association discrepancy[C]//Proceedingds of the 10th International Conference on Learning Representations (ICLR 2022), 2022.
[23] KINGMA D P, WELLING M. Auto-encoding variational bayes[C]//Proceedingds of the 2nd International Conference on Learning Representations (ICLR 2014), Banff, 2014.
[24] DINH L, SOHL-DICKSTEIN J, BENGIO S. Density estimation using real nvp[C]//Proceedingds of the 5th International Conference on Learning Representations (ICLR 2017), Toulon, 2017.
[25] CHO K, VAN M B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv:1406.1078, 2014.
[26] MATHUR A P, TIPPENHAUER N O. SWaT: a water treatment testbed for research and training on ICS security[C]// Proceedingds of the 2nd International Workshop on Cyber-Physical Systems for Smart Water Networks (CySWater 2016), Vienna, 2016: 31-36.
[27] AHMED C M, PALLETI V R, MATHUR A P. WADI: a water distribution testbed for research in the design of secure cyber physical systems[C]//Proceedingds of the 3rd International Workshop on Cyber?Physical Systems for Smart Water Networks (CySWater 2017), Pittsburgh, 2017: 25-28.
[28] GARG A, ZHANG W, SAMARAN J, et al. An evaluation of anomaly detection and diagnosis in multivariate time series[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(6): 2508-2517. |