[1] KINGMA D P, WELLING M. Auto-encoding variational Bayes[C]//Proceedings of the International Conference on Learning Representations, 2014: 1-14.
[2] REZAEE M, FERRARO F. A discrete variational recurrent topic model without the reparametrization trick[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 13831-13843.
[3] PANWAR M, SHAILABH S, AGGARWAL M, et al. TAN-NTM: topic attention networks for neural topic modeling[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021: 3865-3880.
[4] TIAN R, MAO Y, ZHANG R. Learning VAE-LDA models with rounded reparameterization trick[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020: 1315-1325.
[5] LEE Y Y, KE H, YEN T Y, et al. Combining and learning word embedding with WordNet for semantic relatedness and similarity measurement[J]. Journal of the Association for Information Science and Technology, 2020, 71(6): 657-670.
[6] ZHAO H, DU L, LIU G, et al. Leveraging meta information in short text aggregation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 4042-4049.
[7] ZHU Q, FENG Z, LI X. GraphBTM: graph enhanced autoencoded variational inference for biterm topic model[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018: 4663-4672.
[8] PENG M, XIE Q, ZHANG Y, et al. Neural sparse topical coding[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2018: 2332-2340.
[9] LI X, ZHANG J, OUYANG J. Dirichlet multinomial mixture with variational manifold regularization: topic modeling over short texts[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 7884-7891.
[10] HUANG J, PENG M, LI P, et al. Improving biterm topic model with word embeddings[J]. World Wide Web, 2020, 23(6): 3099-3124.
[11] DIENG A B, RUIZ F J R, BLEI D M. Topic modeling in embedding spaces[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 439-453.
[12] GUPTA P, CHAUDHARY Y, BUETTNER F, et al. Document informed neural autoregressive topic models with distributional prior[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 6505-6512.
[13] LI C, WANG H, ZHANG Z, et al. Topic modeling for short texts with auxiliary word embeddings[C]//Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, 2016: 165-174.
[14] ZHAO X, WANG D, ZHAO Z, et al. A neural topic model with word vectors and entity vectors for short texts[J]. Information Processing & Management, 2021, 58(2): 102455.
[15] MIAO Y, LEI Y, BLUNSOM P. Neural variational inference for text processing[C]//Proceedings of the 33rd International Conference on Machine Learning, 2016: 1727-1736.
[16] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018: 4171-4186.
[17] REIMERS N, GUREVYCH I. Sentence-BERT: sentence embeddings using siamese BERT-Networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, 2019: 3982-3992.
[18] 胡铭菲, 左信, 刘建伟. 深度生成模型综述[J]. 自动化学报, 2022, 48(1): 40-74.
HU M F, ZUO X, LIU J W. A survey of deep generative models[J]. Acta Automatica Sinica, 2022, 48(1): 40-74.
[19] MA J, SAUL L K, SAVAGE S, et al. Identifying suspicious URLs: an application of large-scale online learning[C]//Proceedings of the 26th Annual International Conference on Machine Learning. Montreal, Quebec, Canada: Association for Computing Machinery, 2009: 681-688.
[20] BLEI D M, LAFFERTY J D. Dynamic topic models[C]//Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh, Pennsylvania, USA: Association for Computing Machinery, 2006: 113-120.
[21] MIAO Y, GREFENSTETTE E, BLUNSOM P. Discovering discrete latent topics with neural variational inference[C]//International Conference on Machine Learning, 2017: 2410-2419.
[22] ZHANG Y, WANG Z, YU Y, et al. LF-LDA: a supervised topic model for multi-label documents classification[J]. International Journal of Data Warehousing and Mining, 2018, 14(2): 18-36. |