[1] KONEČNÝ J, MCMAHAN H B, YU F X, et al. Federated learning: strategies for improving communication efficiency[J]. arXiv:1610.05492, 2016.
[2] DUAN M, LIU D, CHEN X, et al. Self-balancing federated learning with global imbalanced data in mobile systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 32(1): 59-71.
[3] WANG W, ZHANG M. Tensor deep learning model for heterogeneous data fusion in Internet of things[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 4(1): 32-41.
[4] ROTHCHILD D, PANDA A, ULLAH E, et al. FetchSGD: communication-efficient federated learning with sketching[C]//Proceedings of the International Conference on Machine Learning, 2020: 8253-8265.
[5] BEIMEL A, KOROLOVA A, NISSIM K, et al. The power of synergy in differential privacy: combining a small curator with local randomizers[J]. arXiv:1912.08951, 2019.
[6] ZHANG W, WANG X, ZHOU P, et al. Client selection for federated learning with non-IID data in mobile edge computing[J]. IEEE Access, 2021, 9: 24462-24474.
[7] LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[C]//Proceedings of the Conference on Machine Learning and Systems, 2020: 429-450.
[8] TRUEX S, LIU L, CHOW K H, et al. LDP-Fed: federated learning with local differential privacy[C]//Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking, 2020: 61-66.
[9] GURSOY M E, TAMERSOY A, TRUEX S, et al. Secure and utility-aware data collection with condensed local differential privacy[J]. IEEE Transactions on Dependable and Secure Computing, 2019, 18(5): 2365-2378.
[10] AONO Y, HAYASHI T, TRIEU PHONG L, et al. Scalable and secure logistic regression via homomorphic encryption[C]//Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, 2016: 142-144.
[11] WANG N, XIAO X, YANG Y, et al. Collecting and analyzing multidimensional data with local differential privacy[C]//Proceedings of the 2019 IEEE 35th International Conference on Data Engineering (ICDE), 2019: 638-649.
[12] ALAYA B, LAOUAMER L, MSILINI N. Homomorphic encryption systems statement: trends and challenges[J]. Computer Science Review, 2020, 36: 100235.
[13] DWORK C. Differential privacy[C]//Proceedings of the International Colloquium on Automata, Languages, and Programming. Berlin, Heidelberg: Springer, 2006: 1-12.
[14] BICHSEL B, GEHR T, DRACHSLER-COHEN D, et al. DP-Finder: finding differential privacy violations by sampling and optimization[C]//Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, 2018: 508-524.
[15] NIU B, CHEN Y, WANG B, et al. AdaPDP: adaptive personalized differential privacy[C]//Proceedings of the IEEE Conference on Computer Communications, 2021: 1-10.
[16] DU J, LI S, CHEN X, et al. Dynamic differential-privacy preserving SGD[J]. arXiv:2111.00173, 2021.
[17] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of the International Conference on Artificial Intelligence and Statistics, 2017: 1273-1282.
[18] YANG Q, LIU Y, CHENG Y, et al. Federated learning[J]. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2019, 13(3): 1-207.
[19] RODRÍGUEZ-BARROSO N, STIPCICH G, JIMÉNEZ-LÓPEZ D, et al. Federated learning and differential privacy: software tools analysis, the Sherpa.ai FL framework and methodological guidelines for preserving data privacy[J]. Information Fusion, 2020, 64: 270-292. |