[1] LI F, WANG X, SUN Y, et al. Transfer learning based cascaded deep learning network and mask recognition for COVID-19[J]. World Wide Web, 2023, 26: 1-16.
[2] HIMEUR Y, AL-MAADEED S, ALMAADEED N, et al. Deep visual social distancing monitoring to combat COVID-19: a comprehensive survey[J]. Sustainable Cities and Society, 2022, 85: 104064.
[3] FANELLI D, PIAZZA F. Analysis and forecast of COVID-19 spreading in China, Italy and France[J]. Chaos, Solitons & Fractals, 2020, 134: 109761.
[4] GALBADAGE T, PETERSON B M, GUNASEKERA R S. Does COVID-19 spread through droplets alone?[J]. Frontiers in Public Health, 2020, 8: 546353.
[5] LIU Y, GAYLE A A, WILDER-SMITH A, et al. The reproductive number of COVID-19 is higher compared to SARS coronavirus[J]. Journal of Travel Medicine, 2020, 27(2): 1-4.
[6] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[7] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[8] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[9] 李泽琛, 李恒超, 胡文帅, 等. 多尺度注意力学习的 Faster R-CNN口罩人脸检测模型[J]. 西南交通大学学报, 2021, 56(5): 1002-1010.
LI Z C, LI H C, HU W S, et al. Masked face detection model based on multi-scale attention-driven Faster RCNN[J]. Journal of Southwest JiaoTong University, 2021, 56(5): 1002-1010.
[10] GAO S H, CHENG M M, ZHAO K, et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(2): 652-662.
[11] GUPTA P, SHARMA V, VARMA S. A novel algorithm for mask detection and recognizing actions of human[J]. Expert Systems with Applications, 2022, 198: 116823.
[12] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[13] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
[14] FARHADI A, REDMON J. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[15] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLO v4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[16] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[17] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[18] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[J]. arXiv:1512.02325, 2015.
[19] 任小康, 刘行行. 基于改进的YOLOv3口罩佩戴检测和识别[J]. 计算机工程与科学, 2022, 44(10): 1812-1821.
REN X K, LIU X X. Mask wearing detection and recognition based on the improved YOLOv3[J]. Computer Engineering & Science, 2022, 44(10): 1812-1821.
[20] 项融融, 李博, 赵桥. 基于改进YOLOv5s的口罩佩戴检测算法[J]. 国外电子测量术, 2022, 41(7): 39-44.
XIANG R R, LI B, ZHAO Q. Mask wearing detection algorithm based on improved YOLOv5s[J]. Foreign Electronic Measurement Technology, 2022, 41(7): 39-44.
[21] WANG Y, DING H, LI B, et al. Mask wearing detection algorithm based on improved YOLOv3 in complex scenes[J]. Computer Engineer, 2020, 46(11): 12-22.
[22] WANG C, ZHANG B, CAO Y, et al. Mask detection method based on YOLO-GBC network[J]. Electronics, 2023, 12(2): 408.
[23] WANG J, WANG J, ZHANG X, et al. A mask-wearing detection model in complex scenarios based on YOLOv7-CPCSDSA[J]. Electronics, 2023, 12(14): 3128.
[24] 程浩然, 王薪陶, 李俊燃, 等. 改进YOLOv4-tiny的疫情协同口罩佩戴检测方法[J]. 计算机工程与应用, 2023, 59(20): 208-218.
CHENG H R, WANG X T, LI J R, et al. Improved YOLOv4-tiny epidemic collaborative mask wearing detection method[J]. Computer Engineering and Applications, 2023, 59(20): 208-218.
[25] 叶茂, 马杰, 王倩, 等. 多尺度特征融合的轻量化口罩佩戴检测算法[J]. 计算机工程, 2022, 48(7): 42-50.
YE M, MA J, WANG Q, et al. Lightweight mask-wearing detection algorithm with multi-scale feature fusion[J]. Computer Engineering, 2022, 48(7): 42-50.
[26] 李莉, 刘阳, 王巍, 等. 多尺度通道注意力机制的口罩佩戴检测算法[J]. 计算机工程与设计, 2023, 44(2): 598-604.
LI L, LIU Y, WANG W, et al. Mask wearing detection algorithm based on multi-scale channel attention mechanism[J]. Computer Engineering and Design, 2023, 44(2): 598-604.
[27] 黄家興, 南新元, 张文龙, 等. 基于改进YOLOv5的轻量化口罩检测算法研究[J]. 计算机仿真, 2023, 40(5): 541-547.
HUANG J X, NAN X Y, ZHANG W L, et al. Research on lightweight mask detection algorithm based on improved YOLOv5[J]. Computer Simulation, 2023, 40(5): 541-547.
[28] 刘翀豪, 潘理虎, 杨帆, 等. 改进YOLOv5的轻量化口罩检测算法[J]. 计算机工程与应用, 2023, 59(7): 232-241.
LIU C H, PAN L H, YANG F, et al. Improved YOLOv5 lightweight mask detection algorithm[J]. Computer Engineering and Applications, 2023, 59(7): 232-241.
[29] 李梦茹, 肖秦琨, 韩泽佳. 基于改进YOLOv5的人脸口罩佩戴检测[J]. 计算机工程与设计, 2023, 44(9): 2811-2821.
LI M R, XIAO Q K, HAN Z J. Face mask wearing detection based on improved YOLOv5 algorithm[J]. Computer Engineering and Design, 2023, 44(9): 2811-2821.
[30] 孙龙, 张荣芬, 刘宇红, 等. 监控视角下密集人群口罩佩戴检测算法[J]. 计算机工程, 2023, 49(9): 313-320.
SUN L, ZHANG R F, LIU Y H, et al. Mask wearing detection algorithm for dense crowds from a monitoring perspective[J]. Computer Engineering, 2023, 49(9): 313-320.
[31] 付惠琛, 高军伟, 车鲁阳. 基于改进YOLOv7的口罩佩戴检测[J]. 液晶与显示, 2023, 38(8): 1139-1147.
FU H C, GAO J W, CHE L Y. Mask wearing detection based on improved YOLOv7[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(8): 1139-1147.
[32] ZHOU J, ZHANG B, YUAN X, et al. YOLO-CIR: the network based on YOLO and ConvNeXt for infrared object detection[J]. Infrared Physics & Technology, 2023, 131: 104703.
[33] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[34] 张华卫, 张文飞, 蒋占军, 等. 引入上下文信息和Attention Gate的GUS-YOLO遥感目标检测算法[J]. 计算机科学与探索, 2024, 18(2): 453-464.
ZHANG H W, ZHANG W F, JIANG Z J, et al. GUS-YOLO remote sensing target detection algorithm introducing context information and attention gate[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 453-464.
[35] ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9759-9768.
[36] CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031.
[37] GUO M H, LU C Z, LIU Z N, et al. Visual attention network[J]. Computational Visual Media, 2023, 9(4): 733-752.
[38] LAU K W, PO L M, REHMAN Y A U. Large separable kernel attention: rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024, 236: 121352.
[39] ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586.
[40] ZHANG H, XU C, ZHANG S. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[J]. arXiv:2311.02877, 2023.
[41] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[42] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[43] SILIANG M, YONG X. MPDIoU: a loss for efficient and accurate bounding box regression[J]. arXiv:2307.07662, 2023.
[44] CHEN H, WANG Y, GUO J, et al. VanillaNet: the power of minimalism in deep learning[J]. arXiv:2305.12972, 2023.
[45] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[46] LI Y, HOU Q, ZHENG Z, et al. Large selective kernel network for remote sensing object detection[J]. arXiv:2303.09030, 2023.
[47] CAI Y, ZHOU Y, HAN Q, et al. Reversible column networks[J]. arXiv:2212.11696, 2022.
[48] CAI H, LI J, HU M, et al. EfficientViT: multi-scale linear attention for high-resolution dense prediction[J]. arXiv:2205.14756, 2022. |