[1] DUONG N C, LUU K, QUACH G K, et al. Longitudinal face modeling via temporal deep restricted Boltzmann machines[C]//Proceedings of the 2016 IEEE International Conference on Computer Vision, 2016: 5772-5780.
[2] WANG W, CUI Z, YAN Y, et al. Recurrent face aging[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2378-2386.
[3] WANG W, YAN Y, CUI Z, et al. Recurrent face aging with hierarchical autoregressive memory[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(3): 654-668.
[4] HELJAKKA A, SOLIN A, KANNALA J. Recursive chaining of reversible image-to-image translators for face aging[C]//Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems, 2018: 309-320.
[5] LI P, HUANG H, HU Y, et al. UVA: a universal variational framework for continuous age analysis[J]. arXiv:1904.00158, 2019.
[6] YANG H, HUANG D, WANG Y, et al. Learning face age progression: a pyramid architecture of GANs[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 31-39.
[7] LIU S, SUN Y, ZHU D, et al. Face aging with contextual generative adversarial nets[C]//Proceedings of the 25th ACM International Conference on Multimedia, 2017: 82-90.
[8] PALSSON S, AGUSTSSON E, TIMOFTE R, et al. Generative adversarial style transfer networks for face aging[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018: 2084-2092.
[9] ANTIPOV G, BACCOUCHE M, DUGELAY J L. Face aging with conditional generative adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Image Processing, 2017: 2089-2093.
[10] ZHANG Z, SONG Y, QI H.Age progression/regression by conditional adversarial autoencoder[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5810-5818.
[11] HE Z, KAN M, SHAN S, et al. S2GAN: share aging factors across ages and share aging trends among individuals[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, 2019: 9440-9449.
[12] OR-EL R, SENGUPTA S, FRIED O, et al. Lifespan age transformation synthesis[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 739-755.
[13] WANG Z, TANG X, LUO W, et al. Face aging with identity-preserved conditional generative adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7939-7947.
[14] WU Y, WANG R, GONG M, et al. Adversarial UV-transformation texture estimation for 3D face aging[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(7): 4338-4350.
[15] DUAN M, LI K, LIAO Q, et al. DEF-Net: a face aging model by using different emotional learnings[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(5): 3012-3022.
[16] 于海波. 基于生成对抗网络的人脸老化算法研究[D]. 北京: 北京交通大学, 2021.
YU H B. Research on face aging algorithm based on generative adversarial network[D]. Beijing: Beijing Jiaotong University, 2021.
[17] LI Q, LIU Y, SUN Z.Age progression and regression with spatial attention modules[C]//Proceedings of the National Conference on Artificial Intelligence, 2020: 11378-11385.
[18]ABDAL R, ZHU P, MITRA N J, et al.Styleflow: attribute-conditioned exploration of StyleGAN-generated images using conditional continuous normalizing flows[J]. ACM Transactions on Graphics, 2021, 40(3): 1-21.
[19] H?RK?NEN E, HERTZMANN A, LEHTINEN J, et al.GANspace: discovering interpretable GAN controls[C]//Advances in Neural Information Processing Systems, 2020, 33: 9841-9850.
[20] LIU Y, LI Q, SUN Z, et al. Style intervention: how to achieve spatial disentanglement with style-based generators?[J]. arXiv:2011.09699, 2020.
[21] SHEN Y, GU J, TANG X, et al.Interpreting the latent space of GANs for semantic face editing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9243-9252.
[22] PANTRAKI E, KOTROPOULOS C. Face aging using global and pyramid generative adversarial networks[J]. Machine Vision and Applications, 2021, 32(4): 82.
[23] HUANG Z, CHEN S, ZHANG J, et al. AgeFlow: conditional age progression and regression with normalizing flows[J].arXiv:2105.07239, 2021.
[24] KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4401-4410.
[25] HE S, LIAO W, YANG M Y, et al. Disentangled lifespan face synthesis[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3877-3886.
[26] KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of StyleGAN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8110-8119.
[27] ABDAL R, QIN Y, WONKA P. Image2StyleGAN: how to embed images into the StyleGAN latent space?[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 4432-4441.
[28] RICHARDSON E, ALALUF Y, PATASHNIK O, et al. Encoding in style: a StyleGAN encoder for image-to-image translation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2287-2296.
[29] WU Z, LISCHINSKI D, SHECHTMAN E. StyleSpace analysis: disentangled controls for StyleGAN image generation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12863-12872.
[30] RAMANATHAN N, CHELLAPPA R.Modeling age progression in young faces[C]//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006: 387-394.
[31] GUO C, FAN B, ZHANG Q, et al.AugFPN: improving multi-scale feature learning for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12595-12604.
[32] ALALUF Y, PATASHNIK O, COHEN-OR D. Only a matter of style: age transformation using a style-based regression model[J]. ACM Transactions on Graphics, 2021, 40(4): 1-12.
[33] MECHREZ R, TALMI I, ZELNIK-MANOR L. The contextual loss for image transformation with non-aligned data[C]//Proceedings of the European Conference on Computer Vision, 2018: 768-783.
[34] DENG J, GUO J, XUE N, et al. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4690-4699.
[35] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 586-595.
[36] LIU Z, LUO P, WANG X, et al. Deep learning face attributes in the wild[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 3730-3738.
[37] WRIGHT L, DEMEURE N. Ranger21: a synergistic deep learning optimizer[J].arXiv:2106.13731, 2021.
[38] ZHANG M, LUCAS J, BA J, et al. Lookahead optimizer: k steps forward, 1 step back[J]. arXiv:1907.08610, 2019.
[39] PARKHI O M, VEDALDI A, ZISSERMAN A .Deep face recognition[C]//Proceedings of the British Machine Vision Conference, 2015.
[40] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local nash equilibrium[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6629-6640. |