[1] LI Y, IBANEZ-GUZMAN J. Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems[J]. IEEE Signal Processing Magazine, 2020, 37(4): 50-61.
[2] AHMED S M, TAN Y Z, CHEW C M, et al. Edge and corner detection for unorganized 3D point clouds with application to robotic welding[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018: 7350-7355.
[3] RAHMAN M M, TAN Y, XUE J, et al. Notice of violation of IEEE publication principles: recent advances in 3D object detection in the era of deep neural networks: a survey[J]. IEEE Transactions on Image Processing, 2019, 29: 2947-2962.
[4] MATURANA D, SCHERER S. VoxNet: a 3D convolutional neural network for real-time object recognition[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015: 922-928.
[5] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 945-953.
[6] QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660.
[7] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems, 2017, 30.
[8] WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12.
[9] ZHAO H, JIANG L, FU C W, et al. Pointweb: enhancing local neighborhood features for point cloud processing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5565-5573.
[10] LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4558-4567.
[11] LIU X, HAN Z, HONG F, et al. LRC-Net: learning discriminative features on point clouds by encoding local region contexts[J]. Computer Aided Geometric Design, 2020, 79: 101859.
[12] CHENG S, CHEN X, HE X, et al. PRA-Net: point relation-aware network for 3D point cloud analysis[J]. IEEE Transactions on Image Processing, 2021, 30: 4436-4448.
[13] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017, 30.
[14] WU Z, SONG S, KHOSLA A, et al. 3D shapenets: a deep representation for volumetric shapes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1912-1920.
[15] YI L, KIM V G, CEYLAN D, et al. A scalable active framework for region annotation in 3D shape collections[J]. ACM Transactions on Graphics, 2016, 35(6): 1-12.
[16] LOSHCHILOV I, HUTTER F. SGDR: stochastic gradient descent with warm restarts[J]. arXiv:1608.03983, 2016.
[17] LI J, CHEN B M, LEE G H. SO-Net: self-organizing network for point cloud analysis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 9397-9406.
[18] 王宝乐, 霍占强. 基于MANet的三维点云特征提取方法研究[J]. 计算机工程与应用, 2022, 58(19): 267-275.
WANG B L, HUO Z Q. Research on feature extraction of 3D point cloud based on MANet[J]. Computer Engineering and Applications, 2022, 58(19): 267-275.
[19] YAN X, ZHENG C, LI Z, et al. PointasNL: robust point clouds processing using nonlocal neural networks with adaptive sampling[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020.
[20] LI Y, BU R, SUN M, et al. PointCNN: convolution on x-transformed points[C]//Advances in Neural Information Processing Systems, 2018, 31.
[21] ATZMON M, MARON H, LIPMAN Y. Point convolutional neural networks by extension operators[J]. arXiv:1803.10091, 2018.
[22] GAO Y, LIU X, LI J, et al. LFT-Net: local feature transformer network for point clouds analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(2): 2158-2168.
[23] LIU Y, FAN B, XIANG S, et al. Relation-shape convolutional neural network for point cloud analysis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 8895-8904.
[24] LIN Z H, HUANG S Y, WANG Y C F. Convolution in the cloud: learning deformable kernels in 3D graph convolution networks for point cloud analysis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1800-1809.
[25] XIE Z, CHEN J, PENG B. Point clouds learning with attention-based graph convolution networks[J]. Neurocomputing, 2020, 402: 245-255.
[26] HAN X F, JIN Y F, CHENG H X, et al. Dual transformer for point cloud analysis[J]. IEEE Transactions on Multimedia, 2022, 25: 5638-5648. |