[1] GHAZVININEJAD M, SHI X, CHOI Y, et al. Generating topical poetry[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016: 1183-1191.
[2] YI X, SUN M, LI R, et al. Chinese poetry generation with a working memory model[C]//Proceedings of the International Joint Conference on Artificial Intelligence, 2018: 4553-4559.
[3] 廖荣凡, 沈希忠, 刘爽. 更具有感情色彩的诗歌生成模型[J]. 计算机系统应用, 2020, 29(5): 46-51.
LIAO R F, SHEN X Z, LIU S. Poetry generation model with more emotional information[J]. Computer Systems Applications, 2020, 29(5): 46-51.
[4] 叶旺. 格式限制的古诗可控生成学习研究[D]. 杭州: 杭州电子科技大学, 2022.
YE W. Towards conditional text generation in formats[D]. Hangzhou: Hangzhou Dianzi University, 2022.
[5] YI X, LI R, YANG C, et al. Mixpoet: diverse poetry generation via learning controllable mixed latent space[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 9450-9457.
[6] 王勇超, 周灵智, 赵亚萍, 等. 自动扩充关键词语义信息的诗歌生成算法[J]. 计算机科学与探索, 2023, 17(6): 1387-1394.
WANG Y C, ZHOU L Z, ZHAO Y P, et al. Poetry generation algorithm with automatic expansion of keyword semantic information[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1387-1394.
[7] LIU Z, FU Z, CAO J, et al. Rhetorically controlled encoder decoder for modern Chinese poetry generation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 1992-2001.
[8] 李章斌. “韵”之离散: 关于当代中国诗歌韵律的一种观察[J]. 中国当代文学研究, 2020(3): 52-66.
LI Z B. The discreteness of “rhyme”: an observation on the rhythm of contemporary Chinese poetry[J]. Contemporary Chinese Literature Studies, 2020(3): 52-66.
[9] YI X, LI R, SUN M. Generating Chinese classical poems with RNN encoder-decoder[C]//Proceedings of the China National Conference on Chinese Computational Linguistics International Symposium on Natural Language Processing Based on Naturally Annotated Big Data, 2017: 211-223.
[10] YANG C, SUN M, YI X, et al. Stylistic Chinese poetry generation via unsupervised style disentanglement[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018: 3960-3969.
[11] H?M?L?INEN M, ALNAJJAR K, POIBEAU T. Modern French poetry generation with RoBERTa and GPT-2[C]//Proceedings of the 13th International Conference on Computational Creativity, 2022: 12-16.
[12] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017, 30: 5998-6008.
[13] LIU Y, LIU D, LV J, et al. Generating Chinese poetry from images via concrete and abstract information[C]//Proceedings of the 2020 International Joint Conference on Neural Networks, 2020.
[14] WANG J, LI H, WU C, et al. Generating diverse Chinese poetry from images via unsupervised method[J]. Neurocomputing, 2022, 492: 188-200.
[15] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[C]//Proceedings of the ICLR, 2015: 1-15.
[16] WANG D Z, HE W, WU H, et al. Chinese poetry generation with planning based neural network[C]//Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers, 2016: 1051-1060.
[17] ZHANG X, LAPATA M. Chinese poetry generation with recurrent neural networks[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014: 670-680.
[18] YANG X, LIN X, SUO S, et al. Generating thematic Chinese poetry using conditional variational autoencoders with hybrid decoders[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018: 4539-4545. |