[1] JAIN A K, DUIN R P W, MAO J. Statistical pattern recognition: a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37.
[2] DONG G, XIE M. Color clustering and learning for image segmentation based on neural networks[J]. IEEE Transactions on Neural Networks, 2005, 16(4): 925-936.
[3] DJENOURI Y, BELHADI A, FOURNIER-VIGER P, et al. Fast and effective cluster-based information retrieval using frequent closed itemsets[J]. Information Sciences, 2018, 453: 154-167.
[4] 陈薇, 袁文定, 方强, 等. 基于自适应卡尔曼滤波的Meanshift跟踪算法[J]. 制造业自动化, 2021, 43(6): 16-20.
CHEN W, YUAN W D, FANG Q, et al. Meanshift tracking algorithm based on adaptive Kalman filter[J]. Manufacturing Automation, 2021, 43(6): 16-20.
[5] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967: 281-297.
[6] GURRUTXAGA I, ALBISUA I, ARBELAITZ O, et al. EP/COP: an efficient method to find the best partition in hierarchical clustering based on a new cluster validity index[J]. Pattern Recognition, 2010, 43(10): 3364-3373.
[7] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likely hood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 1-22.
[8] WANG W, YANG J, MUNTZ R. STING: a statistical information grid approach to spatial data mining[C]//Proceedings of the 23rd International Conference on Very Large Data Bases, 1997: 186-195.
[9] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996: 226-231.
[10] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
[11] DU M, DING S, JIA H. Study on density peaks clustering based on k-nearest neighbors and principal component analysis[J]. Knowledge-Based Systems, 2016, 99: 135-145.
[12] LIU R, WANG H, YU X. Shared-nearest-neighbor-based clustering by fast search and find of density peaks[J]. Information Sciences, 2018, 450: 200-226.
[13] YU D, LIU G, GUO M, et al. Density peaks clustering based on weighted local density sequence and nearest neighbor assignment[J]. IEEE Access, 2019, 7: 34301-34317.
[14] 赵嘉, 姚占峰, 吕莉, 等. 基于相互邻近度的密度峰值聚类算法[J]. 控制与决策, 2021, 36(3): 543-552.
ZHAO J, YAO Z F, LYU L, et al. Density peaks clustering based on mutual neighbor degree[J]. Control and Decision, 2021, 36(3): 543-552.
[15] HOU J, ZHANG A, QI N. Density peak clustering based on relative density relationship[J]. Pattern Recognition, 2020, 108: 107554.
[16] 陈磊, 吴润秀, 李沛武, 等. 加权K近邻和多簇合并的密度峰值聚类算法[J]. 计算机科学与探索, 2022, 16(9): 2163-2176.
CHEN L, WU R X, LI P W, et al. Weighted k-nearest neighbors and multi-cluster merge density peaks clustering algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2163-2176.
[17] 马振明, 安俊秀, 周俊. 结合混合密度和局部结构的密度峰值聚类算法[J]. 计算机工程与应用, 2023, 59(12): 84-93.
MA Z M, AN J X, ZHOU J. Density peaking clustering algorithm combining hybrid density and local structure[J]. Computer Engineering and Applications, 2023, 59(12): 84-93.
[18] 陈蔚昌, 赵嘉, 肖人彬, 等. 面向密度分布不均数据的近邻优化密度峰值聚类算法[J]. 控制与决策, 2024, 39(3): 919-928.
CHEN W C, ZHAO J, XIAO R B, et al. Density peaks clustering algorithm with nearest neighbor optimization for data with uneven density distribution[J]. Control and Decsion, 2024, 39(3): 919-928.
[19] 张新元, 贠卫国. 共享K近邻和多分配策略的密度峰值聚类算法[J]. 小型微型计算机系统, 2023, 44(1): 75-82.
ZHANG X Y, YUN W G. Sharing K-nearest neighbors and multiple assignment policies density peaks clustering algorithm[J]. Journal of Chinese Computer Systems, 2023, 44(1): 75-82.
[20] GONG C, SU Z, WANG P, et al. Cumulative belief peaks evidential K-nearest neighbor clustering[J]. Knowledge-Based Systems, 2020, 200: 105982.
[21] DONG G, KUANG G. Target recognition via information aggregation through Dempster-Shafer’s evidence theory[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6): 1247-1251.
[22] DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. Annals of Mathematical Statistics, 1967, 38(2): 325-339.
[23] SHAFER G. A mathematical theory of evidence[M]. [S.l.]: Princeton University Press, 1976: 85-150.
[24] SMETS P, KENNES R. The transferable belief model[J]. Artificial Intelligence, 1994, 66(2): 191-234.
[25] CHANG H, YEUNG D Y. Robust path-based spectral clustering[J]. Pattern Recognition, 2008, 41(1): 191-203.
[26] DENOEUX T. A k?nearest neighbor classification rule based on Dempster-Shafer theory[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1995, 25(5): 804-813.
[27] VINH N, EPPS J, BAILEY J. Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance[J]. Journal of Machine Learning Research, 2010, 11(1): 2837-2854.
[28] FOWLKES E B, MALLOWS C L. A method for comparing two hierarchical clusterings[J]. Journal of the American Statistical Association, 1983, 78(383): 553-569.
[29] FU L, MEDICO E. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data[J]. BMC Bioinformatics, 2007, 8(1): 1-15.
[30] GIONIS A, MANNILA H, TSAPARAS P. Clustering aggregation[J]. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1): 4.
[31] VEENMAN C J, REINDERS M J T, BACKER E. A maximum variance cluster algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1273-1280.
[32] FRANTI P, VIRMAJOKI O, HAUTAMAKI V. Fast agglomerative clustering using a k-nearest neighbor graph[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 1875-1881.
[33] ZELNIK-MANOR L, PERONA P. Self-tuning spectral clustering[C]//Advances in Neural Information Processing Systems, 2004.
[34] CHENG D, ZHANG S, HUANG J. Dense members of local cores-based density peaks clustering algorithm[J]. Knowledge-Based Systems, 2020, 193: 105454.
[35] BAY S D, KIBLER D, PAZZANI M J, et al. The UCI KDD archive of large data sets for data mining research and experimentation[J]. ACM SIGKDD Explorations Newsletter, 2000, 2(2): 81-85. |