[1] 刘超, 陈善球, 廖周, 等.自适应光学技术在通信波段对大气湍流的校正[J]. 光学精密工程, 2014, 22(10): 2605-2610.
LIU C, CHEN S Q, LIAO Z, et al. Correction of atmospheric turbulence by adaptive optics in waveband of free-space coherent laser communication[J]. Editorial Office of Optics and Precision Engineering, 2014, 22(10): 2605-2610.
[2] 王建立, 董玉磊, 姚凯男, 等. 349单元自适应光学波前处理器[J]. 光学精密工程, 2018, 26(5): 1007-1013.
WANG J L, DONG Y L, YAO K N, et al. Three hundred and fourty-nine unit adaptive optical wavefront processor[J]. Optics and Precision Engineering, 2018, 26(5): 1007-1013.
[3] 刘超, 胡立发, 穆全全, 等. 校正水平湍流波面的自适应光学系统的带宽需求[J]. 光学精密工程, 2010, 18(10): 2137-2142.
LIU C, HU L F, MU Q Q, et al. Bandwidth requirements of adaptive optical system for horizontal turbulence correction[J]. Editorial Office of Optic sand Precision Engineering, 2010, 18(10): 2137-2142.
[4] 刘万军, 张正寰, 曲海成. 融合DenseNet的多尺度图像去模糊模型[J]. 计算机工程与应用, 2021, 57(24): 219-226.
LIU W J, ZHANG Z H, QU H C. Multi-scale image deblurring model with DenseNet[J]. Computer Engineering and Applications, 2021, 57(24): 219-226.
[5] ZHU X, MILANFAR P. Removing atmospheric turbulence via space-invariant deconvolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(1): 157-170.
[6] 李灏, 杨志景, 王美林, 等. 噪声和U型判别网络的真实世界图像超分辨率[J]. 计算机工程与应用, 2023, 59(6): 204-211.
LI H, YANG Z J, WANG M L, et al. Real-world image super-resolutioin based on noise and U-shape discrimination network[J]. Computer Engineering and Applications, 2023, 59(6): 204-211.
[7] 黄健, 赵元元, 郭苹, 等. 深度学习的单幅图像超分辨率重建方法综述[J]. 计算机工程与应用, 2021, 57(18): 13-23.
HUANG J, ZHAO Y Y, GUO P, et al. Survey of single image super-resolution based on deep learning[J]. Computer Engineering and Applications, 2021, 57(18): 13-23.
[8] ANANTRASIRICHAI N, ACHIM A, KINGSBURY N G, et al. Atmospheric turbulence mitigation using complex wavelet-based fusion[J]. IEEE Transactions on Image Processing, 2013, 22(6): 2398-2408.
[9] MAO Z Y, CHIMITT N, CHAN S H. Accelerating atmospheric turbulence simulation via learned phase-to-space transform[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 14759-14768.
[10] 黄建明, 沈忙作. 基于噪声特性的大气湍流退化图像多帧盲反卷积复原[J]. 光学学报, 2008, 28(9): 1686-1690.
HUANG J M, SHEN M Z. Multi frame blind deconvolution restoration of atmospheric turbulence-degraded images based on noise characteristic[J]. Acta Optica Sinica, 2008, 28(9): 1686-1690.
[11] LAW N M. Lucky imaging: diffraction-limited astronomy from the ground in the visible[J]. The Observatory, 2007, 127: 71-71.
[12] HIRSCH M, SRA S, SCHOLKOPF B, et al. Efficient filter flow for space-variant multi frame blinddeconvolution[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 607-614.
[13] LAU C P, SOURI H, CHELLAPPA R. ATFaceGAN: single face image restoration and recognitionfrom atmospheric turbulence[C]//Proceedings of the 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition, 2020: 32-39.
[14] YASARLA R, PATEL V M. Learning to restore a single face image degraded by atmospheric turbulence using cnns[J]. arXiv:2007.08404, 2020.
[15] YASARLA R, PATEL V M. Learning to restore images degraded by atmospheric turbulence using uncertainty[C]//Proceedings of the 2021 IEEE International Conference on Image Processing, 2021: 1694-1698.
[16] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[17] LEE J, KIM J. Improving video captioning with non-local neural networks[C]//Proceedings of the 2018 IEEE International Conference on Consumer Electronics-Asia, 2018: 206-212.
[18] ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[C]//Proceedings of the International Conference on Machine Learning, 2019: 7354-7363.
[19] KENDALL A, GAL Y. What uncertainties do we need in Bayesian deep learning for computer vision?[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 5580-5590.
[20] WANG Y, BAI X. Wide & deep learning for spatial & intensity adaptive image restoration[J]. arXiv:2305.18708, 2023.
[21] MAO Z Y, JAISWAL A, WANG Z, et al. Single frame atmospheric turbulence mitigation: a benchmark study and a new physics-inspired transformer model[C]//Proceedings of the European Conference on Computer Vision, 2022: 430-446.
[22] ZAMIR S W, ARORA A, KHAN S, et al. Multi-stage progressive image restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 14821-14831.
[23] AL-NAJJAR Y, CHEN D. Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI[J]. International Journal of Scientific and Engineering Research, 2012, 3(8): 1-5.
[24] SHEIKH H R, BOVIK A C, DE V G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2117-2128.
[25] NIRANJAN D V, THOMAS D K, WILSON S G, et al. Image quality assessment based on a degradation model[J]. IEEE Transactions on Image Processing, 2000, 9(4): 636-650.
[26] RIM J, LEE H, WON J, et al. Real-world blur dataset for learning and benchmarking deblurring algorithms[C]//Proceedings of the European Conference on Computer Vision, 2020: 23-28. |