[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[2] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[3] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Advances in Neural Information Processing Systems, 2015, 28: 91-99.
[4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[5] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
[6] YU Q, WANG K, WANG H. A multiscale YOLOv3 object detection algorithm[J]. Journal of Jiangsu University (Natural Science Edition), 2021, 42(6): 628-633.
[7] LIU W, ANGUELOV D, ERHAND, et al. SSD: single shot multi box detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37.
[8] LIU S, HUANG D, WANG Y, et al. Single-shot refinement neural network for object detection[C]//Proceedings of the 2018 European Conference on Computer Vision, 2018: 404-419.
[9] 冷佳旭, 莫梦竟成, 周应华, 等. 无人机视角下的目标检测研究进展[J]. 中国图象图形学报, 2023, 28(9): 2-13.
LENG J X, MO M J C, ZHOU Y H, et al. Research progress of target detection from the perspective of UAV[J]. Journal of Image and Graphics, 2023, 28(9): 2-13.
[10] 范江霞, 张文豪, 张丽丽, 等. 改进YOLOv5的无人机影像车辆检测方法[J]. 遥感信息, 2023, 38(3): 114-121.
FAN J X, ZHANG W H, ZHANG L L, et al. Improved detection method of UAV imaging vehicle of YOLOv5[J]. Remote Sensing Information, 2023, 38(3): 114-121.
[11] 徐光达, 毛国君. 多层级特征融合的无人机航拍图像目标检测[J]. 计算机科学与探索, 2023, 17(3): 635-643.
XU G D, MAO G J. Aerial image object detection of UAV based on multi-level feature fusion[J].Journal of Frontiers of Computer Science & Technology, 2023, 17(3): 635-643.
[12] CHENG G, SI Y, HONG H, et al. Cross-scale feature fusion for object detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(3): 1-5.
[13] KISANTAL M, WOJNA Z, MURAWSKI J, et al. Augmentation for small object detection[J]. arXiv:1902.07296, 2019.
[14] 张翼, 马荣贵, 梁辰. 改进YOLOv5的无人机影像道路目标检测算法[J]. 测试科学与仪器, 2024, 15(1): 128-139.
ZHANG Y, MA R G, LIANG C. Improved road target detection algorithm for UAV image of YOLOv5[J]. Journal of Measurement Science and Instrumentation, 2024, 15(1): 128-139.
[15] 谢椿辉, 吴金明, 徐怀宇. 改进YOLOv5的无人机影像小目标检测算法[J]. 计算机工程与应用, 2023, 59(9): 198-206.
XIE C H, WU J M, XU H Y. Small object detection algorithm based on improved YOLOv5 in UAV image[J]. Computer Engineering and Applications, 2023, 59(9): 198-206.
[16] NEUBECK A, GOOL L J V. Efficient non-maximum suppression[C]//Proceedings of the 18th International Conference on Pattern Recognition, 2006: 20-24.
[17] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS--improving object detection with one line of code[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 5561-5569.
[18] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[19] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[20] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[21] YANG J, FU X, HU Y, et al. PanNet: a deep network architecture for pan-sharpening[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 5449-5457.
[22] WANG X, ZHANG S, YU Z, et al. Scale equalizing pyramid convolution for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 13359-13368.
[23] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[24] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[J]. arXiv:1910.03151, 2019.
[25] HOU X, LIU C, WAN F, et al. DANet: divergent activation for weakly supervised object localization[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 6589-6598.
[26] JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks[J]. arXiv:1506.02025, 2015.
[27] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 764-773.
[28] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 2018 European Conference on Computer Vision, 2018: 3-19.
[29] FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3146-3154.
[30] LIU S, WANG Y, HUANG D. Adaptive NMS: refining pedestrian detection in a crowd[C]//Proceedings of the CVF Conference on Computer Vision and Pattern Recognition, 2019: 1-9.
[31] ZHENG Z H, PING W, WEI L, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 2-8. |