[1] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10): 1345-1359.
[2] 邱颖豫, 张柯, 杨欣毅. 面向旋转机械故障诊断的深度流形迁移学习[J]. 计算机工程与应用, 2022, 58(12): 289-298.
QIU Y Y, ZHANG K, YANG X Y. Deep manifold transfer learning method for fault diagnosis of rotating machinery under different working conditions[J]. Computer Engineering and Applications, 2022, 58(12): 289-298.
[3] 赵鹏飞,李艳玲,林民. 结合胶囊网络的领域适应意图识别[J]. 计算机工程与应用, 2021, 57(21): 188-194.
ZHAO P F, LI Y L, LIN M. Intent detection of domain adaptation combined with capsule network[J]. Computer Engineering and Applications, 2021, 57(21): 188-194.
[4] CAI Q, PAN Y, NGO C W, et al. Exploring object relation in mean teacher for cross-domain detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 11457-11466.
[5] TARVAINEN A, VALPOLA H. Weight-averaged consistency targets improve semi-supervised deep learning results[J]. arXiv:1703.01780, 2017.
[6] DENG J, LI W, CHEN Y, et al. Unbiased mean teacher for cross-domain object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4091-4101.
[7] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 2223-2232.
[8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[10] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, 2015.
[11] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 9627-9636.
[12] GE Z, LIU S, WANG F, et al. YOLOx: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[13] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[14] LI F, ZHANG H, LIU S, et al. DN-DETR: accelerate DETR training by introducing query denoising[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 13619-13627.
[15] KIM T, JEONG M, KIM S, et al. Diversify and match: a domain adaptive representation learning paradigm for object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 12456-12465.
[16] HSU H K, YAO C H, TSAI Y H, et al. Progressive domain adaptation for object detection[C]//Proceedings of the 2020 IEEE/CVF Winter Conference on Applications of Computer Vision, 2020: 749-757.
[17] CHEN Y, LI W, SAKARIDIS C, et al. Domain adaptive faster R-CNN for object detection in the wild[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3339-3348.
[18] SAITO K, USHIKU Y, HARADA T, et al. Strong-weak distribution alignment for adaptive object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 6956-6965.
[19] HE Z, ZHANG L. Multi-adversarial Faster-RCNN for unrestricted object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 6668-6677.
[20] CHEN C, ZHENG Z, DING X, et al. Harmonizing transferability and discriminability for adapting object detectors[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8869-8878.
[21] CHEN C, ZHENG Z, HUANG Y, et al. I3Net: implicit instance-invariant network for adapting one-stage object detectors[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12576-12585.
[22] LI C, DU D, ZHANG L, et al. Spatial attention pyramid network for unsupervised domain adaptation[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, 2020: 481-497.
[23] VS V, GUPTA V, OZA P, et al. Mega-CDA: memory guided attention for category-aware unsupervised domain adaptive object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4516-4526.
[24] ZHANG Y, WANG Z, MAO Y. RPN prototype alignment for domain adaptive object detector[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12425-12434.
[25] CHEN C, LI J, ZHENG Z, et al. Dual bipartite graph learning: a general approach for domain adaptive object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 2703-2712.
[26] WANG Y, ZHANG R, ZHANG S, et al. Domain-specific suppression for adaptive object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 9603-9612.
[27] WU A, LIU R, HAN Y, et al. Vector-decomposed disentanglement for domain-invariant object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 9342-9351.
[28] REZAEIANARAN F, SHETTY R, ALJUNDI R, et al. Seeking similarities over differences: similarity-based domain alignment for adaptive object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 9204-9213.
[29] ZHAO L, WANG L. Task-specific inconsistency alignment for domain adaptive object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 14217-14226.
[30] LI W, LIU X, YUAN Y. SIGMA: semantic-complete graph matching for domain adaptive object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5291-5300.
[31] ZHOU W, DU D, ZHANG L, et al. Multi-granularity alignment domain adaptation for object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 9581-9590.
[32] YU J, LIU J, WEI X, et al. Cross-domain object detection with mean-teacher transformer[J]. arXiv:2205.01643, 2022.
[33] XU C D, ZHAO X R, JIN X, et al. Exploring categorical regularization for domain adaptive object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11724-11733.
[34] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096-2130.
[35] KIM S, CHOI J, KIM T, et al. Self-training and adversarial background regularization for unsupervised domain adaptive one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 6092-6101. |