[1] 任汝静, 殷鹏, 王志会, 等. 中国阿尔茨海默病报告2021[J]. 诊断学理论与实践, 2021, 20(4): 317-337.
REN R J, YIN P, WANG Z H, et al. China Alzheimer’s disease report 2021[J]. Journal of Diagnostics Concepts and Practice, 2021, 20(4): 317-337.
[2] GAUTHIER S, ROSA-NETO P, MORAIS J A, et al. World Alzheimer report 2021: journey through the diagnosis of dementia[R]. Alzheimer’s Disease International, 2021.
[3] SALVATORE C, CERASA A, BATTISTA P, et al. Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: a machine learning approach[J]. Frontiers in Neuroscience, 2015, 9: 307.
[4] TANZI R E, BERTRAM L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective[J]. Cell, 2005, 120(4): 545-555.
[5] HAMPEL H, MITCHELL A, BLENNOW K, et al. Core biological marker candidates of Alzheimer’s disease-perspectives for diagnosis, prediction of outcome and reflection of biological activity[J]. Journal of Neural Transmission, 2004, 111(3): 247-272.
[6] MUELLER S G, WEINER M W, THAL L J, et al. Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s disease neuroimaging initiative (ADNI)[J]. Alzheimer’s & Dementia, 2005, 1(1): 55-66.
[7] ALEXANDER G E, CHEN K, PIETRINI P, et al. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies[J]. American Journal of Psychiatry, 2002, 159(5): 738-745.
[8] BATTINENI G, CHINTALAPUDI N, AMENTA F, et al. A comprehensive machine-learning model applied to magnetic resonance imaging (MRI) to predict Alzheimer’s disease (AD) in older subjects[J]. Journal of Clinical Medicine, 2020, 9(7): 2146.
[9] GREENSPAN H, VAN GINNEKEN B, SUMMERS R M. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1153-1159.
[10] 杜昱峥, 曹慧, 聂永琦,等. 深度学习在阿尔茨海默病分类诊断中的应用[J]. 计算机工程与应用, 2023, 59(3): 49-65.
DU Y Z, CAO H, NIE Y Q, et al. Application of deep learning in classification and diagnosis of Alzheimer’s disease[J]. Computer Engineering and Applications, 2023, 59(3): 49-65.
[11] PAN D, ZENG A, JIA L, et al. Early detection of Alzheimer’s disease using magnetic resonance imaging: a novel approach combining convolutional neural networks and ensemble learning[J]. Frontiers in Neuroscience, 2020, 14: 259.
[12] LIAN C, LIU M, ZHANG J, et al. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 42(4): 880-893.
[13] KANG W, LIN L, ZHANG B, et al. Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer’s disease diagnosis[J]. Computers in Biology and Medicine, 2021, 136: 104678.
[14] FAN L, LI H, ZHUO J, et al. The human brainnetome atlas: a new brain atlas based on connectional architecture[J]. Cerebral Cortex, 2016, 26(8): 3508-3526.
[15] MUELLER S G, WEINER M W, THAL L J, et al. The Alzheimer’s disease neuroimaging initiative[J]. Neuroimaging Clinics of North America, 2005, 15(4): 869-877.
[16] LIU S, LIU S, CAI W, et al. Early diagnosis of Alzheimer’s disease with deep learning[C]//2014 IEEE 11th International Symposium on Biomedical Imaging , 2014: 1015-1018.
[17] SILVEIRA M, MARQUES J. Boosting Alzheimer disease diagnosis using PET images[C]//2010 20th International Conference on Pattern Recognition, 2010: 2556-2559.
[18] ROBERTS R O, KNOPMAN D S, MIELKE M M, et al. Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal[J]. Neurology, 2014, 82(4): 317-325.
[19] FOLSTEIN M F, ROBINS L N, HELZER J E. The mini-mental state examination[J]. Archives of General Psychiatry, 1983, 40(7): 812.
[20] BERG L. Clinical dementia rating[J]. The British Journal of Psychiatry, 1984, 145(3): 803-806.
[21] REISBERG B, FERRIS S H, DE LEON M J, et al. The global deterioration scale for assessment of primary degenerative dementia[J]. The American Journal of Psychiatry, 1982, 139(9): 1136-1139.
[22] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[23] LI C, CUI Y, LUO N, et al. Trans-ResNet: integrating transformers and CNNs for Alzheimer’s disease classification[C]//2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022: 1-5. |