计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (24): 216-226.DOI: 10.3778/j.issn.1002-8331.2207-0203
冉险生,苏山杰,陈俊豪,张之云
RAN Xiansheng, SU Shanjie, CHEN Junhao, ZHANG Zhiyun
摘要: 针对复杂道路场景下密集遮挡目标、小尺度目标检测精度低,容易出现漏检和误检的问题,以YOLOv5算法为网络基础框架,提出了一种自适应特征融合的复杂道路场景目标检测算法。引入特征融合因子,改进相邻尺度特征融合方式,增加各层网络有效样本从而提升中小尺度目标检测能力;增加浅层特征检测层,提升模型小尺度目标的学习能力;改进感受野模块,允许模型自适应选择有效感受野提取目标特征信息;引入Quality Focal Loss改善密集遮挡目标,小尺度目标的定位精度,并在特征融合网络加入注意力机制,提高算法对特征信息的有效利用。实验结果表明,相比原始算法,改进算法在公开数据集BDD100K(10类)、Udacity及自制数据集CQTransport的检测精度分别提高了6.7、4.9、7.9个百分点;在基本不降低检测速度的前提下,能较好提升复杂道路场景下的检测性能,并在一定程度上解决了检测过程中密集遮挡目标、小尺度目标出现的漏检和误检问题。