计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (23): 320-333.DOI: 10.3778/j.issn.1002-8331.2206-0345
杨鸿光,张宇辉,魏文红
YANG Hongguang, ZHANG Yuhui, WEI Wenhong
摘要: 针对运动编码粒子群算法在处理无人机运动目标搜索问题时存在被其他高概率区域混淆、算法搜索成功率不够高的问题,提出了一种基于运动编码的自适应学习策略粒子群优化算法以优化无人机飞行路径。该算法先设计了适应于各种搜索场景的初始化方案;再融入聚类算法用以动态划分粒子群,并改进了子群中不同类型粒子的更新方程以适应路径规划中的粒子子群;最后添加了自适应学习策略以控制参数,旨在保持收敛速度的基础上提高搜索到最优路径的概率。在不同搜索场景下的实验结果表明,与运动编码粒子群优化算法相比,算法的检测性能提升了6%。此外,与其他元启发式优化算法的对比结果也展示了算法的优势。