计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (13): 194-204.DOI: 10.3778/j.issn.1002-8331.2302-0319
杨祥,王华彬,董明刚
YANG Xiang, WANG Huabin, DONG Minggang
摘要: 如今对交通标志的检测在自动驾驶、智慧交通等领域是必不可少的关键环节,其关系到人们的驾驶安全问题。针对目前对交通标志的识别存在漏检、误检以及识别精度低、模型参数过多的问题,提出了一种基于改进YOLOv5的交通标志检测算法。增加一个小目标检测头,提高对小目标的识别精度。设计了一种由CBAM、SPConv、C3相结合的CSC3模块,引入YOLOv5主干网络中,同时减少其数量,目的是提升特征提取能力,降低参数量。将用于检测大目标的检测头删除,再把SPP替换成SPPCSPC,提高模型对交通标志的检测能力。增加跨层连接,并且通过重构Concat连接,目的是提高算法的识别精度。引入EIOU来替换CIOU损失函数,从而解决漏检、误检问题。使用DWConv替换主干网络的Conv,目的是减少模型参数,提高检测精度。实验结果表明,改进后的算法的平均准确率均值mAP@0.5:0.95为62.6%,比原YOLOv5s提高了8.3个百分点,参数量下降了10.1%,并且检测速度达到了74?FPS,能够满足实际检测需求。