计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (8): 322-330.DOI: 10.3778/j.issn.1002-8331.2112-0383
张兴锐,刘畅,陈哲,邓强强,吕明,罗谦
ZHANG Xingrui, LIU Chang, CHEN Zhe, DENG Qiangqiang, LYU Ming, LUO Qian
摘要: 机场地铁短时客流预测是实现机场旅客快速疏解、航站楼现场运力资源指挥调度的关键。考虑到机场复杂的空间结构与航班波动的影响,建立基于图卷积神经网络(GCN)和组合门控卷积(GLU)的机场地铁短时客流预测模型。通过图卷积神经网络融合机场空间路径点与地铁口的空间结构关系,同时,设计一种组合门控卷积模块挖掘航班波动下地铁客流的时变特征,有效地捕捉地铁客流的波动性。基于首都机场T3航站楼真实客流数据对模型的有效性进行检验,经多次实验结果表明,提出的时空图卷积短时客流预测模型在均方根误差、平均绝对误差和平均绝对百分比误差均小于传统ARIMA预测模型与深度学习中LSTM、STGCN模型,该模型能捕捉地铁客流与航班客流的波动变化关系,具有较高的预测精度,提高了模型预测的鲁棒性。