计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (3): 49-65.DOI: 10.3778/j.issn.1002-8331.2206-0237
杜昱峥,曹慧,聂永琦,魏德健,冯妍妍
出版日期:
2023-02-01
发布日期:
2023-02-01
DU Yuzheng, CAO Hui, NIE Yongqi, WEI Dejian, FENG Yanyan
Online:
2023-02-01
Published:
2023-02-01
摘要: 阿尔茨海默病是一种常见的神经退行性疾病,可依据神经影像学进行临床诊断。深度学习能够挖掘患者影像资料中隐含的丰富信息并完成不同阶段的病程分类,是目前计算机辅助诊断领域的研究热点。介绍阿尔茨海默病神经影像学数据集,总结经典深度学习网络模型在阿尔茨海默病分类诊断中的应用以及深度学习模型可解释性,重点对卷积神经网络与融合多网络的分类诊断方法进行梳理分析,对不同的思路和方法综合对比,讨论深度学习在阿尔茨海默病辅助诊断领域面临的挑战与未来研究方向,对提高阿尔茨海默病的临床诊断效率与早期预测准确性具有重要意义。
杜昱峥, 曹慧, 聂永琦, 魏德健, 冯妍妍. 深度学习在阿尔茨海默病分类诊断中的应用[J]. 计算机工程与应用, 2023, 59(3): 49-65.
DU Yuzheng, CAO Hui, NIE Yongqi, WEI Dejian, FENG Yanyan. Application of Deep Learning in Classification and Diagnosis of Alzheimer's Disease[J]. Computer Engineering and Applications, 2023, 59(3): 49-65.
[1] LI F,LIU M.A hybrid convolutional and recurrent neural network for hippo-campus analysis in Alzheimer’s disease[J].Journal of Neuroscience Methods,2019,323:108-118. [2] DUNNWALD M,ERNST P,DUZEL E,et al.Fully automated deep learning-based localization and segmentation of the locus coeruleus in aging and Parkinson’s disease using neuromelanin-sensitive MRI[J].International Journal of Computer Assisted Radiology and Surgery,2021,16(12):2129-2135. [3] IMAMURA K,YADA Y,IZUMI Y,et al.Prediction model of amyotrophic lateral sclerosis by deep learning with patient induced pluripotent stem cells[J].Annals of Neurology,2021,89(6):1226-1233. [4] YEE E,MA D,POPURI K,et al.Construction of MRI-based Alzheimer’s disease score based on efficient 3D convolutional neural network:comprehensive validation on 7,902 images from a multi-center dataset[J].Journal of Alzheimer’s Disease,2021,79(1):47-58. [5] HUANG Y,XU J,ZHOU Y,et al.Diagnosis of Alzheimer’s disease via multi-modality 3D convolutional neural net-work[J].Frontiers in Neuroscience,2019,13:509. [6] LIU M,ZHANG D,SHEN D,et al.Ensemble sparse classification of Alzheimer’s disease[J].Neuroimage,2012,60(2):1106-1116. [7] FENG W,HALM-LUTTERODT N V,TANG H,et al.Automated MRI-based deep learning model for detection of Alzheimer’s disease process[J].International Journal of Neural Systems,2020,30(6):2050032. [8] KAVITHA M,YUDISTIRA N,KURITA T.Multi instance learning via deep CNN for multi-class recognition of Alzheimer’s disease[C]//2019 IEEE 11th International Workshop on Computational Intelligence and Applications(IWCIA),2019:89-94. [9] NANNI L,INTERLENGHI M,BRAHNAM S,et al.Comparison of transfer learning and conventional machine learning applied to structural brain MRI for the early diagnosis and prognosis of Alzheimer’s disease[J].Frontiers in Neurology,2020,11:576194. [10] PETERSEN R C,AISEN P S,BECKETT L A,et al.Alzheimer’s Disease Neuroimaging Initiative(ADNI):clinical charac-terization[J].Neurology,2010,74(3):201-209. [11] MARCUS D S,WANG T H,PARKER J,et al.Open Access Series of Imaging Studies(OASIS):cross-sectional MRI data in young,middle aged,nondemented,and demented older adults[J].Journal of Cognitive Neuroscience,2007,19(9):1498-1507. [12] MARCUS D S,FOTENOS A F,CSERNANSKY J G,et al.Open access series of imaging studies:longitudinal MRI data in nondemented and demented older adults[J].Journal of Cognitive Neuroscience,2010,22(12):2677-2684. [13] LAMONTAGNE P J,BENZINGER T L S,MORRIS J C,et al.OASIS-3:longitudinal neuroimaging,clinical,and cognitive dataset for normal aging and Alzheimer disease[J].MedRxiv,2019. [14] ELLIS K A,ROWE C C,VILLEMAGNE V L,et al.Addressing population aging and Alzheimer’s disease through the Australian imaging biomarkers and lifestyle study:collaboration with the Alzheimer’s disease neuroimaging initiative[J].Alzheimer’s & Dementia,2010,6(3):291-296. [15] MALONE I B,CASH D,RIDGWAY G R,et al.MIRIAD—public release of a multiple time point Alzheimer’s MR imaging dataset[J].Neuroimage,2013,70:33-36. [16] BEEKLY D L,RAMOS E M,LEE W W,et al.The National Alzheimer’s Coordinating Center(NACC) database:the uniform data set[J].Alzheimer Disease & Associated Disorders,2007,21(3):249-258. [17] KHAGI B,KWON G R,LAMA R.Comparative analysis of Alzheimer’s disease classification by CDR level using CNN,feature selection,and machine—learning techniques[J].International Journal of Imaging Systems and Technology,2019,29(3):297-310. [18] LEE B,ELLAHI W,CHOI J Y.Using deep CNN with data permutation Scheme for classification of Alzheimer’s disease in structural Magnetic Resonance Imaging(sMRI)[J].IEICE Transactions on Information and Systems,2019,102(7):1384-1395. [19] 石磊,彭少康,张亚萌,等.基于特征增强金字塔网络的阿尔茨海默症早期诊断研究[J].数据采集与处理,2022,37(4):727-735. SHI L,PENG S K,ZHANG Y M,et al.Early diagnosis of Alzheimer’s disease based on feature enhanced pyramid network[J].Journal of Data Acquisition and Processing,2022,37(4):727-735. [20] NAWAZ A.Deep convolutional neural network based classification of Alzheimer’s disease using MRI data[C]//2020 IEEE 23rd International Multitopic Conference(INMIC),2020. [21] JAIN R,JAIN N,AGGARWAL A,et al.Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images[J].Cognitive Systems Research,2019,57:147-159. [22] SARATXAGA C L,MOYA I,PICóN A,et al.MRI deep learning-based solution for Alzheimer’s disease prediction[J].Journal of Personalized Medicine,2021,11(9):902. [23] TUFAIL A B,MA Y K,ZHANG Q N.Binary classification of Alzheimer’s disease using sMRI imaging modality and deep learning[J].Journal of Digital Imaging,2020,33(5):1073-1090. [24] PUENTE-CASTRO A,FERNANDEZ-BLANCO E,PAZOS A,et al.Automatic assessment of Alzheimer’s disease diagnosis based on deep learning techniques[J].Computers in Biology and Medicine,2020,120:103764. [25] BAE J B,LEE S,JUNG W,et al.Identification of Alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging[J].Scientific Reports,2020,10(1):22252. [26] 张荣,张烁,余红梅,等.融合多模态影像的阿尔茨海默病多分类诊断模型[J].山西大学学报(自然科学版),2021,44(4):671-680. ZHANG R,ZHANG S,YU H M,et al.Multi-class diagnosis model of Alzheimer’s disease using multi-modal images[J].Journal of Shanxi University(Natural Science Edition),2021,44(4):671-680. [27] 孔伶旭,吴海锋,曾玉,等.迁移学习特征提取的rs-fMRI早期轻度认知障碍分类[J].智能系统学报,2021,16(4):662-672. KONG L X,WU H F,ZENG Y,et al.Transfer learning-based feature extraction method for the classification of rs-fMRI early mild cognitive impairment[J].CAAI Transactions on Intelligent Systems,2021,16(4):662-672. [28] MECHELLI A,PRICE C J,FRISTON K J,et al.Voxel-based morphometry of the human brain:methods and applications[J].Current Medical Imaging,2005,1(2):105-113. [29] MAQSOOD M,NAZIR F,KHAN U,et al.Transfer learning assisted classification and detection of Alzheimer’s disease stages using 3D MRI scans[J].Sensors,2019,19(11):2645. [30] BASHEERA S,SAI RAM M S.Convolution neural network-based Alzheimer’s disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation[J].Alzheimer’s & Dementia:Translational Research & Clinical Interventions,2019,5:974-986. [31] 赵尚义,王远军.基于磁共振图像和改进的UNet++模型区分阿尔茨海默症患者和健康人群[J].波谱学杂志,2020,37(3):321-331. ZHAO S Y,WANG Y J.Classification of Alzheimer’s disease patients based on magnetic resonance images and an improved UNet++ model[J].Chinese Journal of Magnetic Resonance,2020,37(3):321-331. [32] MEHMOOD A,YANG S,FENG Z,et al.A transfer learning approach for early diagnosis of Alzheimer’s disease on MRI images[J].Neuroscience,2021,460:43-52. [33] KARASAWA H,LIU C L,OHWADA H.Deep 3D convolutional neural network architectures for Alzheimer’s disease diagnosis[C]//Asian Conference on Intelligent Information and Database Systems.Cham:Springer,2018:287-296. [34] 陆小玲,吴海锋,曾玉,等.3D迁移网络的阿尔茨海默症分类研究[J].计算机工程与应用,2021,57(16):253-262. LU X L,WU H F,ZENG Y,et al.3D transfer learning network for classification of Alzheimer’s disease[J].Computer Engineering and Applications,2021,57(16):253-262. [35] 杜丽君,唐玺璐,周娇,等.基于注意力机制和多任务学习的阿尔茨海默症分类[J].计算机科学,2022,49(S1):60-65. DU L J,TANG X L,ZHOU J,et al.Alzheimer’s disease classification method based on attention mechanism and multi-task learning[J].Computer Science,2022,49(S1):60-65. [36] SPASOV S,PASSAMONTI L,DUGGENTO A,et al.A parameter?efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease[J].Neuroimage,2019,189:276-287. [37] 曾安,邹超,潘丹.基于3D卷积神经网络-感兴趣区域的阿尔茨海默症辅助诊断模型[J].生物医学工程研究,2020,39(2):133-138. ZENG A,ZOU C,PAN D.Diagnosis of Alzheimer’s disease based on 3D convolutional neural network—regions of interest[J].Journal of Biomedical Engineering Research,2020,39(2):133-138. [38] ZHU W,SUN L,HUANG J,et al.Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI[J].IEEE Transactions on Medical Imaging,2021,40(9):2354-2366. [39] 魏志宏,闫士举,韩宝三,等.基于多输出的3D卷积神经网络诊断阿尔兹海默病[J].波谱学杂志,2021,38(1):92-100. WEI Z H,YAN S J,HAN B S,et al.Diagnosis of Alzheimer’s disease based on multi-output three-dimensional convolutional neural network[J].Chinese Journal of Magnetic Resonance,2021,38(1):92-100. [40] TEIPEL S J,GROTHE M,LISTA S,et al.Relevance of magnetic resonance imaging for early detection and diagnosis of Alzheimer disease[J].Medical Clinics,2013,97(3):399-424. [41] DUBOIS B,FELDMAN H H,JACOVA C,et al.Research criteria for the diagnosis of Alzheimer’s disease:revising the NINCDS—ADRDA criteria[J].The Lancet Neurology,2007,6(8):734-746. [42] 颜宇,陈帆,和红杰.基于边界增强损失的海马体分割算法[J].光电子激光,2020,31(3):299-309. YAN Y,CHEN F,HE H J.Hippocampal segmentation with boundary enhancement loss[J].Journal of Optoelectronics Laser,2020,31(3):299-309. [43] SUN J,YAN S,SONG C,et al.Dual-functional neural network for bilateral hippocampi segmentation and diagnosis of Alzheimer’s disease[J].International Journal of Computer Assisted Radiology and Surgery,2020,15(3):445-455. [44] 林万云,杜民.脑部PET图像在阿尔茨海默病早期诊断中的应用[J].北京生物医学工程,2021,40(2):174-180. LIN W Y,DU M.Application of brain PET images in the early diagnosis of Alzheimer’s disease[J].Beijing Biomedical Engineering,2021,40(2):174-180. [45] 贾洪飞,王瑜,肖洪兵,等.基于功能磁共振图像转换在阿尔茨海默症分类中的应用[J].中国医学物理学杂志,2022,39(4):448-452. JIA H F,WANG Y,XIAO H B,et al.Functional magnetic resonance imaging transformation for classification of Alzheimer’s disease[J].Chinese Journal of Medical Physics,2022,39(4):448-452. [46] JIA H,WANG Y,DUAN Y,et al.Alzheimer’s disease classification based on image transformation and features fusion[J].Computational and Mathematical Methods in Medicine,2021. [47] LIPTON Z C,BERKOWITZ J,ELKAN C.A critical review of recurrent neural networks for sequence learning[J].arXiv:1506.00019,2015. [48] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [49] PELKA O,FRIEDRICH C M,NENSA F,et al.Sociodemographic data and APOE-epsilon4 augmentation for MRI-based detection of amnestic mild cognitive impairment using deep learning systems[J].PLoS One,2020,15(9):e0236868. [50] LI H,FAN Y.Early prediction of Alzheimer’s disease dementia based on baseline hippocampal MRI and 1-year follow-up cognitive measures using deep recurrent neural networks[C]//2019 IEEE 16th International Symposium on Biomedical Imaging(ISBI 2019),2019:368-371. [51] GHAZI M M,NIELSEN M,PAI A,et al.Training re-current neural networks robust to incomplete data:application to Alzheimer’s disease progression modeling[J].Medical Image Analysis,2019,53:39-46. [52] DOERSCH C.Tutorial on variational autoencoders[J].arXiv:1606.05908,2016. [53] AGING T N I,DIAGNOSTIC R I W G,BRAAK H,et al.Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease[J].Neurobiology of Aging,1997,18(4):1-2. [54] HONG J,KANG S K,ALBERTS I,et al.Image-level trajectory inference of tau pathology using variational autoencoder for Flortaucipir PET[J].European Journal of Nuclear Medicine and Molecular Imaging,2022:1-12. [55] KIM J,LEE B.Identification of Alzheimer’s disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine[J].Human Brain Mapping,2018,39(9):3728-3741. [56] HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507. [57] HINTON G E,OSINDERO S,TEH Y W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554. [58] SHEN T,JIANG J,LU J,et al.Predicting Alzheimer disease from mild cognitive impairment with a deep belief network based on 18F-FDG-PET images[J].Molecular Imaging,2019,18:1536012119877285. [59] ZHOU P,JIANG S,YU L,et al.Use of a sparse-response deep belief network and extreme learning machine to discriminate Alzheimer’s disease,mild cognitive impairment,and normal controls based on amyloid PET/MRI images[J].Frontiers in Medicine,2021,7:621204. [60] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[J].Advances in Neural Information Processing Systems,2014,27. [61] ISLAM J,ZHANG Y.GAN-based synthetic brain PET image generation[J].Brain Informatics,2020,7(1):1-12. [62] YU W,LEI B,NG M K,et al.Tensorizing GAN with high order pooling for Alzheimer’s disease assessment[J].IEEE Transactions on Neural Networks and Learning Systems,2021. [63] ODENA A.Semi-supervised learning with generative adversarial networks[J].arXiv:1606.01583,2016. [64] 潘伟博,汪海涛,姜瑛,等.基于非对称多模态学习的阿尔茨海默症辅助诊断算法研究[J].小型微型计算机系统,2021,42(6):1213-1218. PAN W B,WANG H T,JIANG Y,et al.Study on auxiliary diagnosis algorithm of Alzheimer’s disease based on asymmetric multimodal learning[J].Journal of Chinese Computer Systems,2021,42(6):1213-1218. [65] AQEEL A,HASSAN A,KHAN M A,et al.A long short-term memory biomarker-based prediction framework for Alzheimer’s disease[J].Sensors,2022,22(4):1475. [66] XIA Z,YUE G,XU Y,et al.A novel end-to-end hybrid network for Alzheimer’s disease detection using 3D CNN and 3D CLSTM[C]//2020 IEEE 17th International Symposium on Biomedical Imaging(ISBI),2020. [67] JIN S,ZOU P,HAN Y,et al.Unsupervised detection of individual atrophy in Alzheimer’s disease[C]//2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society(EMBC),2021,2647-2650. [68] LI A,LI F,ELAHIFASAEE F,et al.Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer’s disease diagnosis[J].Brain Imaging and Behavior,2021,15(5):2330-2339. [69] CUI R,LIU M.Hippocampus analysis by combination of 3-D denseNet and shapes for Alzheimer’s disease diagnosis[J].IEEE Journal of Biomedical and Health Informatics,2018,23(5):2099-2107. [70] FENG C,ELAZAB A,YANG P,et al.Deep learning framework for Alzheimer’s disease diagnosis via 3D-CNN and FSBi-LSTM[J].IEEE Access,2019,7:63605-63618. [71] ZENG A,JIA L,PAN D,et al.Early prognosis of Alzheimer’s disease based on convolutional neural networks and ensemble learning[J].Journal of Biomedical Engineering,2019,36(5):711-719. [72] KANG W,LIN L,ZHANG B,et al.Multi-model and multi-slice ensemble learning architecture based on 2D convolutional neural networks for Alzheimer’s disease diagnosis[J].Computers in Biology and Medicine,2021,136:104678. [73] LIANG W,ZHANG K,CAO P,et al.Rethinking modeling Alzheimer’s disease progression from a multi-task learning perspective with deep recurrent neural network[J].Computers in Biology and Medicine,2021,138:104935. [74] RAJU M,GOPI V P,ANITHA V S,et al.Multi-class diagnosis of Alzheimer’s disease using cascaded three dimensional-convolutional neural network[J].Physical and Engineering Sciences in Medicine,2020,43(4):1219-1228. [75] WANG H,SHEN Y,WANG S,et al.Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease[J].Neurocomputing,2019,333:145-156. [76] LI F,LIU M.Alzheimer’s disease diagnosis based on multiple cluster dense convolutional networks[J].Computerized Medical Imaging and Graphics,2018,70:101-110. [77] PAN D,ZOU C,RONG H,et al.Early diagnosis of Alzheimer’s disease based on three-dimensional convolutional neural networks ensemble model combined with genetic algorithm[J].Journal of Biomedical Engineering,2021,38(1):47-55. [78] QIU S,JOSHI P S,MILLER M I,et al.Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification[J].Brain,2020,143(6):1920-1933. [79] BOHLE M,EITEL F,WEYGANDT M,et al.Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer’s disease classification[J].Frontiers in Aging Neuroscience,2019,11:194. [80] JIN D,ZHOU B,HAN Y,et al.Generalizable,reproducible,and neuroscientifically interpretable imaging biomarkers for Alzheimer’s disease[J].Advanced Science,2020,7(14):2000675. |
[1] | 淦亚婷, 安建业, 徐雪. 基于深度学习的短文本分类方法研究综述[J]. 计算机工程与应用, 2023, 59(4): 43-53. |
[2] | 杨坤融, 熊余, 张健, 储雯. 面向长短期混合数据的MOOC辍学预测策略研究[J]. 计算机工程与应用, 2023, 59(4): 130-138. |
[3] | 李玲, 郭广颂. 融合指标分组的高维混合多目标进化优化[J]. 计算机工程与应用, 2023, 59(4): 165-174. |
[4] | 胡欣珏, 付章杰. 高图像质量的一图藏两图方法[J]. 计算机工程与应用, 2023, 59(4): 235-242. |
[5] | 杨寒雨, 赵晓永, 王磊. 数据归一化方法综述[J]. 计算机工程与应用, 2023, 59(3): 13-22. |
[6] | 陈晓婷, 李实. 对话情绪识别综述[J]. 计算机工程与应用, 2023, 59(3): 33-48. |
[7] | 钟智鹏, 王海龙, 苏贵斌, 柳林, 裴冬梅. 融合CNN-BiLSTM和自注意力模型的音乐情感识别[J]. 计算机工程与应用, 2023, 59(3): 94-103. |
[8] | 林鸿辉, 刘建华, 郑智雄, 胡任远, 罗逸轩. 联合对话行为识别与情感分类的多任务网络[J]. 计算机工程与应用, 2023, 59(3): 104-111. |
[9] | 高红霞, 郜伟. 融合关键点属性与注意力表征的人脸表情识别[J]. 计算机工程与应用, 2023, 59(3): 118-126. |
[10] | 丁上上, 郑田莉, 姚康, 张贺童, 裴融浩, 付威威. 深度学习屈光检测方法研究[J]. 计算机工程与应用, 2023, 59(3): 193-201. |
[11] | 张冬冬, 郭杰, 陈阳. 基于原始点云的三维目标检测算法[J]. 计算机工程与应用, 2023, 59(3): 209-217. |
[12] | 张晗, 郑伟昊, 窦志成, 文继荣. 融合法律文本结构信息的刑事案件判决预测[J]. 计算机工程与应用, 2023, 59(3): 253-263. |
[13] | 林令德, 刘纳, 王正安. Adapter与Prompt Tuning微调方法研究综述[J]. 计算机工程与应用, 2023, 59(2): 12-21. |
[14] | 裴文斌, 王海龙, 柳林, 裴冬梅. 音乐信息检索下的乐器识别综述[J]. 计算机工程与应用, 2023, 59(2): 34-47. |
[15] | 潘梦竹, 李千目, 邱天. 深度多模态表示学习的研究综述[J]. 计算机工程与应用, 2023, 59(2): 48-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||