计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (1): 72-81.DOI: 10.3778/j.issn.1002-8331.2207-0087
王一旭,肖小玲,王鹏飞,向家富
WANG Yixu, XIAO Xiaoling, WANG Pengfei, XIANG Jiafu
摘要: 针对复杂环境中,烟雾火焰检测存在精度低,小目标检测困难等问题,提出一种改进的基于YOLOv5s的小目标烟雾火焰检测算法。基于公开数据集自建了9?981张不相似的烟雾火焰图像数据集,解决现有数据集的限制,提高了模型的训练效率与泛化能力;在网络中添加3-D注意力机制SimAM,增加算法的特征提取能力,而且没有增加额外的参数;修改网络中的Neck结构,将三尺度检测改为四尺度检测,并结合了加权双向特征金字塔网络(BiFPN)结构,对特征融合过程进行修改,提高小目标的检测能力与特征融合能力;通过遗传算法来优化网络中的部分超参数,进一步模型的检测能力。实验结果表明,改进后的算法比原始YOLOv5s算法平均检测精度提高了7.2%,同时对小目标检测精度更高,误检漏检等情况减少。