计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (21): 264-271.DOI: 10.3778/j.issn.1002-8331.2203-0169
谭会生,徐界铭,张驾祥
TAN Huisheng, XU Jieming, ZHANG Jiaxiang
摘要: 为了实现反向传播(back propagation,BP)神经网络的现场可编程门阵列(field programmable gate array,FPGA)处理速度的提升和资源消耗的降低,提出一种总体设计和关键模块融合优化的BP神经网络的FPGA实现结构。利用定点数据量化和流水线结构,提高系统的处理速度;采用二次方程多段拟合Sigmoid激活函数,降低计算复杂度;通过调整并行转串行模块与激活函数模块的处理顺序,减少了95%的激活函数模块的使用,降低了资源消耗;采用一种网络原始权值读取与更新权值存储交替流水进行的双端口RAM存取方法,以提高数据存取的速度、降低存储资源消耗。经过对硬件优化设计的字符和服装识别实验验证,结果表明,优化后的总逻辑单元使用率为原来的31%。在FPGA中优化结构实现单样本前向传播与反向传播所用时间为24.332?μs,为软件MATLAB实现时间的45.63%,提高了BP神经网络的运算速度。