计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (1): 274-281.DOI: 10.3778/j.issn.1002-8331.2007-0331
黄体浩,李俊青,赵海勇
HUANG Tihao, LI Junqing, ZHAO Haiyong
摘要: 拷贝数变异是一种主要的基因组结构变异形式,会导致基因组区域中出现大小不等的扩增或缺失。针对现有拷贝数变异检测算法受GC含量偏差、测序误差等因素影响而导致检测能力低的问题,提出了一种基于遗传算法优化的BP神经网络拷贝数变异检测算法。该算法充分考虑基因组相邻位置之间的内在相关性,融合多个特征,并使用BP神经网络解决各个特征之间的联合作用以预测CNV;针对现有的BP神经网络模型存在的问题,利用遗传算法优化BP神经网络的权值和阈值,以提高该算法的CNV检测性能。实验结果表明,该算法对不同测序覆盖深度和肿瘤纯度共300个样本的平均检测灵敏度、平均检测精度和平均[F1]评分分别为97.27%、97.78%和97.53%,均优于其他几种算法,且能够显著降低样本边界偏差值。