计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (19): 250-256.DOI: 10.3778/j.issn.1002-8331.2103-0052
赵军艳,降爱莲,强彦
ZHAO Junyan, JIANG Ailian, QIANG Yan
摘要: 复杂场景中的人脸检测由于受到图像质量、人脸尺度和光线等因素影响,精准地定位小人脸、避免漏检、误检是一件极具挑战性的任务。提出了一种基于YOLOv3、融合图像超分辨率重建技术的两级人脸检测模型SR-YOLOv3。针对场景中小人脸目标的漏检问题,利用K-means++算法对先验框进行聚类分析,设置更小尺寸的先验框来捕获小人脸信息;针对模糊小尺度人脸的误检问题,采用Darknet53作为主干网络,融入SRGAN图像超分辨率重建模块对低分辨率的人脸进行数据增强,形成一个可以提高低分辨率小人脸检测性能的检测网络。利用WIDERFACE数据集对SR-YOLOv3模型进行训练和测试,并与MTCNN、CMS-RCNN、HR、S3FD算法相比,验证了提出的模型具有更高的检测精确度,尤其是在hard子集上的性能提升最为明显。SR-YOLOv3能够有效地利用人脸信息,精准检测出复杂场景中的难检测人脸目标,具有很好的鲁棒性。