计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (17): 165-173.DOI: 10.3778/j.issn.1002-8331.2112-0247
霍占强,贾海洋,乔应旭,雒芬,陈玮
HUO Zhanqiang, JIA Haiyang, QIAO Yingxu, LUO Fen, CHEN Wei
摘要: 目前多数实时语义分割网络不仅同时处理边界和纹理等细节信息而且还忽略了语义边界区域特征,从而导致物体边界分割质量下降。针对该问题,提出一种边界感知的实时语义分割网络,主要从三个方面提高边界语义分割质量。提出了边界感知学习机制利用位置信息降低边界特征和轮廓附近细节的耦合度使边界感知和位置关系相互促进。设计轻量级区域自适应模块增强卷积网络对复杂语义边界区域的建模能力。根据采样区域像素贡献值不同设计了高效的空洞空间金字塔池化模块以增强重要的细节和语义特征。实验方面,与基准相比,在Cityscapes验证集上精度提升了约5.8个百分点,在Cityscapes测试集上以47.2 FPS的推理速度使精度达到了74.9%。在CamVid数据集上与BiSeNetV2算法相比mIoU提升了约3.96个百分点。