计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (10): 1-12.DOI: 10.3778/j.issn.1002-8331.2111-0403
杨红艳,杜健民
出版日期:
2022-05-15
发布日期:
2022-05-15
YANG Hongyan, DU Jianmin
Online:
2022-05-15
Published:
2022-05-15
摘要: 高光谱成像遥感技术可获取地物的光谱、辐射和空间信息,在国民经济的各个领域得到广泛的应用。但其狭窄的波段间距带来丰富光谱信息的同时,也带来了信息冗余,增加了数据处理的难度。因此,高光谱遥感数据在进行实际应用前,需要进行波段选择并提取光谱特征,降低数据维数。对高光谱遥感图像的波段选择研究进展进行了综述,在分析、归纳波段选择策略的基础上,从评价准则、空谱特征、半监督学习、稀疏表达、智能搜索和深度学习六方面阐述了波段选择方法的最新研究进展,探讨了当前高光谱图像波段选择面临的问题与挑战,对未来发展的趋势进行了预估。
杨红艳, 杜健民. 高光谱遥感图像波段选择研究进展综述[J]. 计算机工程与应用, 2022, 58(10): 1-12.
YANG Hongyan, DU Jianmin. Research Progress Review of Hyperspectral Remote Sensing Image Band Selection[J]. Computer Engineering and Applications, 2022, 58(10): 1-12.
[1] 童庆禧,张兵,郑芬兰.高光谱遥感——原理、技术与应用[M].北京:高等教育出版社,2006:40-47. TONG Q X,ZHANG B,ZHENG F L.Hyperspectral remote sensing:the principle,technology and application[M].Beijing:Higher Education Press,2006:40-47. [2] 浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000:2-10. PU R L,GONG P.Hyperspectral remote sensing and its applications[M].Beijing:Higher Education Press,2000:2-10. [3] 张良培,张立福.高光谱遥感[M].武汉:武汉大学出版社,2005:3-8. ZHANG L P,ZHANG L F.Hyperspectral remote sensing[M].Wuhan:Wuhan University Press,2005:3-8. [4] HUGHES G F.On the mean accuracy of statistical pattern recognizers[J].IEEE Transactions on Information Theory,1968,14(1):55-63. [5] JIA X P,KUO B C,CRAWFORD M M.Feature mining for hyperspectral image classification[J].Proceedings of the IEEE,2013,101(3):676-697. [6] CHANG C I.Hyperspectral imaging:techniques for spectral detection and classification[M].New York:Kluwer Academic/Plenum Publishers,2003:5-15. [7] BAJCSY P,GROVES P.Methodology for hyperspectral band selection[J].Photogrammetric Engineering and Remote Sensing,2004,70(7):793-802. [8] ZHANG H,LAN J H,GUO Y K.A dense spatial-spectral attention network for hyperspectral image band selection[J].Remote Sensing Letters,2021(1):1-14. [9] 周佳巧,崔文楠,张涛,等.基于光谱测量数据的自适应波段选择技术[J].激光与光电子学进展,2019,56(23):232501. ZHOU J Q,CUI W N,ZHANG T,et al.Adaptive band selection technique based on spectral measurement data[J].Laser & Optoelectronics Progress,2019,56(23):232501. [10] SUN W W,DU Q.Hyperspectral band selection:a review[J].IEEE Geoscience and Remote Sensing Magazine,2019,7(2):118-139. [11] SU H J,DU Q,CHEN G S,et al.Optimized hyperspectral band selection using particle swarm optimization[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(6):2659-2670. [12] IFARRAGUERRI A,PRAIRIE M W.Visual method for spectral band selection[J].IEEE Geoscience and Remote Sensing Letters,2004,1(2):101-106. [13] RICHARDS J A,JIA X P.Remote sensing digital image analysis[M].Berlin:Springer,2006:33-45. [14] QIAN D,HE Y.Similarity-based unsupervised band selection for hyperspectral image analysis[J].IEEE Geoscience and Remote Sensing Letters,2008,5(4):564-568. [15] CHANG C I.An information-theoretic approach to spectral variability,similarity,and discrimination for hyperspectral image analysis[J].IEEE Transactions on Information Theory,2000,46(5):1927-1932. [16] KUMAR B,MANOHARAN P.Whale optimization-based band selection technique for hyperspectral image classification[J].International Journal of Remote Sensing,2021,42(13):5109-5147. [17] KIM J H,KIM J,YANG Y,et al.Covariance-based band selection and its application to near-real-time hyperspectral target detection[J].Optical Engineering,2017,56(5):1053101. [18] CHANG C I,QIAN D,SUN T L,et al.A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(6):2631-2641. [19] CHANG C I,SU W.Constrained band selection for hyperspectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(6):1575-1585. [20] FENG J,JIAO L C,ZHANG X R,et al.Hyperspectral band selection based on trivariate mutual information and clonal selection[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(7):4092-4105. [21] GUO B F,GUNN S R,DAMPER R I,et al.Band selection for hyperspectral image classification using mutual information[J].IEEE Geoscience and Remote Sensing Letters,2006,3(4):522-526. [22] SUI C H,LI C,FENG J,et al.Unsupervised manifold-preserving and weakly redundant band selection method for hyperspectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2020,58(2):1156-1170. [23] WANG Q,ZHANG F H,LI X L.Optimal clustering framework for hyperspectral band selection[J].IEEE Transactions on Geoscience and Remote Sensing,2018,56(10):5910-5922. [24] MITRA P,MURTHY C A,PAL S K.Unsupervised feature selection using feature similarity[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(3):301-312. [25] VARADE D,MAURYA A K,DIKSHIT O.Unsupervised band selection of hyperspectral data based on mutual information derived from weighted cluster entropy for snow classification[J].Geocarto International,2019,36(15):1-23. [26] 赵洁.基于K均值聚类的高光谱遥感影像分类研究[J].地理空间信息,2016,14(3):26-29. ZHAO J.Research on hyperspectral remote sensing images classification based on K-means clustering[J].Geospatial Information,2016,14(3):26-29. [27] KALIDINDI R K,PARDHA S V G,DAVULURI R.Featured clustering and ranking-based bad cluster removal for hyperspectral band selection and classification using ensemble of binary SVM classifiers[J].International Journal of Information Technology Project Management,2021,12(4):61-78. [28] 任智伟,吴玲达.基于AP聚类的高光谱波段选择[J].激光与光电子学进展,2018,55(10):393-397. REN Z W,WU L D.Hyperspectral band selection based on affinity propagation clustering[J].Laser & Optoelectronics Progress,2018,55(10):393-397. [29] SU H J,SHENG Y H,DU P J,et al.Adaptive affinity propagation with spectral angle mapper for semi-supervised hyperspectral band selection[J].Applied Optics,2012,51(14):2656-2663. [30] MARTINEZ U A,PLA F,SOTOCA J M,et al.Clustering-based hyperspectral band selection using information measures[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(12):4158-4171. [31] SUN W W,PENG J T,YANG G,et al.Fast and latent low-rank subspace clustering for hyperspectral band selection[J].IEEE Transactions on Geoscience and Remote Sensing,2020,58(6):3906-3915. [32] PATRA S,MODI P,BRUZZONE L.Hyperspectral band selection based on rough set[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(10):5495-5503. [33] TASKIN G,KAYA H,BRUZZONE L.Feature selection based on high dimensional model representation for hyperspectral images[J].IEEE Transactions on Image Processing,2017,26(6):2918-2928. [34] QV H,YIN J H,LUO X Y,et al.Band dual density discrimination analysis for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2018,56(12):7257-7271. [35] HABERMANN M,FREMONT V,SHIGUEMORI E H.Supervised band selection in hyperspectral images using single-layer neural networks[J].International Journal of Remote Sensing,2019,40(10):3900-3926. [36] ZHANG M Y,GONG M G,CHAN Y Q.Hyperspectral band selection based on multi-objective optimization with high information and low redundancy[J].Applied Soft Computing,2018,70:604-621. [37] BARMAN B,PATRA S.Variable precision rough set based unsupervised band selection technique for hyperspectral image classification[J].Knowledge-Based Systems,2020,193:105414. [38] 刘瑶.基于邻域粗糙集的高光谱波段选择算法研究[D].哈尔滨:哈尔滨工程大学,2017. LIU Y.The research on hyperspectral band selection algorithm based on neighborhood rough set[D].Harbin:Harbin Engineering University,2017. [39] CHAVEZ P S,BERLIN G L,SOWERS L B.Statistical methods for selection Landsat MSS ratios[J].Journal of Applied Photographic Engineering,1982,8:23-30. [40] 刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报,2005,10(2):218-222. LIU C H,ZHAO C H,ZHANG L Y.A new method of hyperspectral remote sensing image dimensional reduction[J].Journal of Image and Graphics,2005,10(2):218-222. [41] 周勇兵.高光谱图像波段选择方法探究[J].江西测绘,2016(3):5-9. ZHOU Y B.The research on the method of band selection of hyperspectral image[J].Jiangxi Cehui,2016(3):5-9. [42] 赵亮,王立国,刘丹凤.高光谱图像子空间的波段选择[J].遥感学报,2019,23(5):904-910. ZHAO L,WANG L G,LIU D F.A subspace band selection method for hyperspectral imagery[J].Journal of Remote Sensing,2019,23(5):904-910. [43] 邓柳.基于分组波段选择及紧凑字典的高光谱遥感图像分类研究[D].湘潭:湘潭大学,2018. DENG L.Hyperspectral remote sensing image classification based on grouped band selection and compact dictionary[D].Xiangtan:Xiangtan University,2018. [44] 苏红军,杜培军,盛业华.高光谱影像波段选择算法研究[J].计算机应用研究,2008,25(4):1093-1096. SU H J,DU P J,SHENG Y H.Study on band selection algorithms of hyperspectral image data[J].Application Research of Computers,2008,25(4):1093-1096. [45] 吴逍航,付小宁,秦帅.基于信息熵和OIF算法的数据降维[J].计算机科学与应用,2019,9(7):1365-1376. WU X H,FU X N,QIN S.Data dimension reduction based on information entropy and OIF algorithms[J].Computer Science and Application,2019,9(7):1365-1376. [46] ZHANG Y,HE C L,SONG X F,et al.A multi-strategy integrated multi-objective artificial bee colony for unsupervised band selection of hyperspectral images[J].Swarm and Evolutionary Computation,2021,60(1):100806. [47] 张伍,陈红梅.基于核模糊粗糙集的高光谱波段选择算法[J].计算机应用,2020,40(1):258-263. ZHANG W,CHEN H M.Hyperspectral band selection algorithm based on kernelized fuzzy rough set[J].Journal of Computer Applications,2020,40(1):258-263. [48] FAUVEL M,TARABALKA Y,BENEDIKTSSON J A,et al.Advances in spectral-spatial classification of hyperspectral images[J].Proceedings of the IEEE,2013,101(3):652-675. [49] CAO X H,JI Y M,WANG L,et al.Fast hyperspectral band selection based on spatial feature extraction[J].Journal of Real-Time Image Processing,2018,15(3):555-564. [50] 梁甜.基于局部空间信息的高光谱波段选择研究[D].西安:西安电子科技大学,2017. LIANG T.Hyperspectral image band selection based on local spatial information[D].Xi’an:Xidian University,2017. [51] TAN K,LI E Z,DU Q,et al.Hyperspectral image classification using band selection and morphological profiles[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(1):40-48. [52] FENG J,JIAO L C,LIU F,et al.Mutual-information-based semi-supervised hyperspectral band selection with high discrimination,high information,and low redundancy[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(5):2956-2969. [53] 魏翠翠.基于标记样本扩充的半监督高光谱波段选择方法[D].西安:西安电子科技大学,2019. WEI C C.Semi-supervised hyperspectral band selection based on labeled sample expansion[D].Xi’an:Xidian University,2019. [54] CAO X H,JI Y M,LIANG T,et al.A semi-supervised spatially aware wrapper method for hyperspectral band selection[J].International Journal of Remote Sensing,2018,39(12):4020-4039. [55] ZHANG Y X,DU B,ZHANG L P.A sparse representation-based binary hypothesis model for target detection in hyperspectral images[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(3):1346-1354. [56] CHEN Y,NASRABADI N M,TRAN T D.Hyperspectral image classification using dictionary-based sparse representation[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(10):3973-3985. [57] LI S J,QI H R.Sparse representation based band selection for hyperspectral images[C]//2011 18th IEEE International Conference on Image Processing,Brussels,Sep 11-14,2011:2693-2696. [58] 林健哲.高光谱图像分类及其子问题研究[D].西安:中国科学院大学(中国科学院西安光学精密机械研究所),2016. LIN J Z.Research on hyperspectral image classification and its sub-problems[D].Xi’an:University of Chinese Academy of Sciences(Xi’an Institute of Optics and Precision Mechanics Chinese Academy of Sciences),2016. [59] LI J M,QIAN Y T.Clustering-based hyperspectral band selection using sparse nonnegative matrix factorization[J].Journal of Zhejiang University:Science C(Computers & Electronics),2011,12(7):542-549. [60] 施蓓琦,刘春,孙伟伟,等.应用稀疏非负矩阵分解聚类实现高光谱影像波段的优化选择[J].测绘学报,2013,42(3):351-358. SHI B Q,LIU C,SUN W W,et al.Sparse nonnegative matrix factorization for hyperspectral optimal band selection[J].Acta Geodaetica et Cartographica Sinica,2013,42(3):351-358. [61] 孙伟伟,张殿发,杨刚,等.加权概率原型分析的高光谱影像波段选择[J].遥感学报,2018,22(1):110-118. SUN W W,ZHANG D F,YANG G,et al.Band selection for hyperspectral imagery based on weighted probabilistic archetypal analysis[J].Journal of Remote Sensing,2018,22(1):110-118. [62] 孙伟伟,蒋曼,李巍岳.利用稀疏自表达实现高光谱影像波段选择[J].武汉大学学报(信息科学版),2017,42(4):441-448. SUN W W,JIANG M,LI W Y.Band selection using sparse self-representation for hyperspectral imagery[J].Geomatics and Information Science of Wuhan University,2017,42(4):441-448. [63] 唐意东,黄树彩,薛爱军.面向目标检测基于稀疏表示的波段选择方法[J].电子学报,2017,45(10):2368-2374. TANG Y D,HUANG S C,XUE A J.Sparse representation based band selection for hyperspectral imagery target detection[J].Acta Electronica Sinica,2017,45(10):2368-2374. [64] BAISANTRY M,SAO A K,SHUKLA D P.Band selection using combined divergence-correlation index and sparse loadings representation for hyperspectral image classification[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:5011-5026. [65] SUN W W,PENG J T,YANG G,et al.Correntropy-based sparse spectral clustering for hyperspectral band selection[J].IEEE Geoscience and Remote Sensing Letters,2020,17(3):484-488. [66] FACHAT A,HOFFMANN K H,FRANZ A.Simulated annealing with threshold accepting or Tsallis statistics[J].Computer Physics Communications,2000,132(3):232-240. [67] MEDJAHED S A,OUALI M.Band selection based on optimization approach for hyperspectral image classification[J].Egyptian Journal of Remote Sensing and Space Sciences,2018,21:413-418. [68] RASHEDI E,NEZAMABADI P H,SARYAZDI S.GSA:a gravitational search algorithm[J].Information Sciences,2009,179(13):2232-2248. [69] YU L,HAN Y F,MU L L.Improved quantum evolutionary particle swarm optimization for band selection of hyperspectral image[J].Remote Sensing Letters,2020,11(9):866-875. [70] 谢欢,陈争光.遗传模拟退火算法在玉米秸秆纤维素含量检测中的应用[J].分析化学,2019,47(12):1987-1994. XIE H,CHEN Z G.Application of genetic simulated annealing algorithm in detection of corn straw cellulose[J].Chinese Journal of Analytical Chemistry,2019,47(12):1987-1994. [71] 谢欢.基于近红外光谱技术的玉米秸秆主要成分含量检测方法研究[D].大庆:黑龙江八一农垦大学,2020. XIE H.Study on detection method of main components in corn straw based on near infrared spectroscopy[D].Daqing:Heilongjiang Bayi Agricultural University,2020. [72] YU S X,BACKER S D,SCHEUNDERS P.Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery[J].Pattern Recognition Letters,2002,23(1/2/3):183-190. [73] YAO H B,TIAN L.A genetic-algorithm-based selective principal component analysis(GA-SPCA) method for high-dimensional data feature extraction[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(6):1469-1478. [74] 张明阳.基于进化优化学习的高光谱特征选择与提取[D].西安:西安电子科技大学,2018. ZHANG M Y.Feature selection and feature extraction for hyperspectral images based on evolutionary optimization and learning[D].Xi’an:Xi’an University of Electronic Science and technology,2018. [75] 苏乐乐.改进型人工免疫系统及其在高光谱数据处理中的应用[D].北京:中国地质大学,2009. SU L L.Improved artificial immune system and its application on the process of hyperspectral data[D].Beijing:China University of Geosciences,2009. [76] 杜倩男.基于进化优化的高光谱特征选择算法研究[D].上海:华东师范大学,2014. DU Q N.Hyperspectral image feature selection based on evolutionary optimization[D].Shanghai:East China Normal University,2014. [77] NAGASUBRAMANIAN K,JONES S,SARKAR S,et al.Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems[J].Plant Methods,2018,14(1):1-13. [78] SU H J,DU Q,CHEN G S et al.Optimized hyperspectral band selection using particle swarm optimization[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(6):2659-2670. [79] DING X H,LI H P,LI Y,et al.Comparison of swarm intelligence algorithms for optimized band selection of hyperspectral remote sensing image[J].Open Geosciences,2020,12(1):425-442. [80] 王偲晗,万幼川,王明威,等.改进蚁群算法及其在高光谱影像分类中的研究[J].计算机工程与应用,2018,54(1):196-203. WANG S H,WAN Y C,WANG M W,et al.Improved ant colony optimization algorithm and its research on hyperspectral image classification[J].Computer Engineering and Applications,2018,54(1):196-203. [81] WANG M W,WU C M,WANG L Z,et al.A feature selection approach for hyperspectral image based on modified ant lion optimizer[J].Knowledge-Based Systems,2019,168:39-48. [82] SU H J,YONG B,DU P J,et al.Dynamic classifier selection using spectral-spatial information for hyperspectral image classification[J].Journal of Applied Remote Sensing,2014,8(1):085095. [83] HE C L,ZHANG Y,GONG D W.A pseudo-label guided artificial bee colony algorithm for hyperspectral band selection[J].Remote Sensing,2020,12(20):3456. [84] XIE F D,LI F F,LEI C K,et al.Unsupervised band selection based on artificial bee colony algorithm for hyperspectral image classification[J].Applied Soft Computing,2019,75:428-440. [85] ZHANG Y,HE C L,SONG X F,et al.A multi-strategy integrated multi-objective artificial bee colony for unsupervised band selection of hyperspectral images[J].Swarm and Evolutionary Computation,2021,60(1):100806. [86] KARABOGA D,BASTURK B.A powerful and efficient algorithm for numerical function optimization:artificial bee colony(ABC) algorithm[J].Journal of Global Optimization,2007,39(3):459-471. [87] SINGH P S,KARTHIKEYAN S.Enhanced classification of remotely sensed hyperspectral images through efficient band selection using autoencoders and genetic algorithm[J].Neural Computing and Applications,2021(7). [88] WANG M W,YAN Z Q,LUO J W,et al.A band selection approach based on wavelet support vector machine ensemble model and membrane whale optimization algorithm for hyperspectral image[J].Applied Intelligence,2021,51:7766-7780. [89] 戴天虹,孙春雪,黄建平,等.基于黄金正弦混沌鬣狗算法的高光谱波段选择[J].激光与光电子学进展,2022,59(10):1030003. DAI T H,SUN C X,HUANG J P,et al.Hyperspectral band selection based on golden sine and chaotic spotted hyena optimizer algorithm[J].Laser & Optoelectronics Progress,2022,59(10):1030003. [90] DOU Z Y,GAO K,ZHANG X D,et al.Band selection of hyperspectral images using attention-based autoencoders[J].IEEE Geoscience and Remote Sensing Letters,2021,18(1):147-151. [91] ZHAO L,ZENG Y,LIU P,et al.Band selection with the explanatory gradient saliency maps of convolutional neural networks[J].IEEE Geoscience and Remote Sensing Letters,2020,17(12):2105-2109. [92] FENG J,CHEN J T,LIU L G,et al.CNN-based multilayer spatial-spectral feature fusion and sample augmentation with local and nonlocal constraints for hyperspectral image classification[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2019,12(4):1299-1313. [93] SAWANT S S,MANOHARAN P,LOGANATHAN A.Band selection strategies for hyperspectral image classification based on machine learning and artificial intelligent techniques—survey[J].Arabian Journal of Geosciences,2021,14(7):646-656. [94] SAFARI K,PRASAD S,LABATE D.A multiscale deep learning approach for high-resolution hyperspectral image classification[J].IEEE Geoscience and Remote Sensing Letters,2021,18(1):167-171. [95] LIU S J,SHI Q.Multitask deep learning with spectral knowledge for hyperspectral image classification[J].IEEE Geoscience and Remote Sensing Letters,2020,17(12):2110-2114. [96] 张祥东,王腾军,朱劭俊,等.基于扩张卷积注意力神经网络的高光谱图像分类[J].光学学报,2021,41(3):49-59. ZHANG X D,WANG T J,ZHU S J,et al.Hyperspectral image classification based on dilated convolutional attention neural network[J].Acta Optica Sinica,2021,41(3):49-59. [97] HE J,ZHANG C,ZHOU L,et al.Simultaneous determination of five micro-components in chrysanthemum morifolium(Hangbaiju) using near-infrared hyperspectral imaging coupled with deep learning with wavelength selection[J].Infrared Physics and Technology,2021,116:103802. [98] FENG J,CHEN J T,SUN Q G,et al.Convolutional neural network based on bandwise-independent convolution and hard thresholding for hyperspectral band selection[J].IEEE Transactions on Cybernetics,2020,51(9):4414-4428. [99] 陈建通.基于深度神经网络的高光谱波段选择方法研究[D].西安:西安电子科技大学,2020. CHEN J T.Research on hyperspectral band selection method based on deep neural network[D].Xi’an:Xidian University,2020. [100] 林洲汉.基于自动编码机的高光谱图像特征提取及分类方法研究[D].哈尔滨:哈尔滨工业大学,2014. LIN Z H.Hyperspectral image feature extraction and classification based on autoencoders[D].Harbin:Harbin Institute of Technology,2014. [101] FENG F,WANG S T,WANG C Y,et al.Learning deep hierarchical spatial-spectral features for hyperspectral image classification based on residual 3D-2D CNN[J].Sensors,2019,19(23):5276-5296. [102] PAUL A,CHAKI N.Supervised data-driven approach for hyperspectral band selection using quantization[J].Geocarto International,2020,9:1-11. [103] CHANG C I.Hyperspectral data processing:algorithm design and analysis[M].Hoboken:Wiley,2013:613-663. [104] 田明华.基于广义光谱角的高光谱波段选择及端元提取方法研究[D].哈尔滨:哈尔滨工程大学,2016. TIAN M H.Hyperspectral band selection and endmember extraction based on n-dimensional solid spectral angle[D].Harbin:Harbin Engineering University,2016. |
[1] | 宁晨, 谢红薇, 孟丽楠. 融合BOVW和复杂网络的高光谱遥感图像分类[J]. 计算机工程与应用, 2022, 58(9): 219-229. |
[2] | 熊风光, 张鑫, 韩燮, 况立群, 刘欢乐, 贾炅昊. 改进的遥感图像语义分割研究[J]. 计算机工程与应用, 2022, 58(8): 185-190. |
[3] | 董朋欣, 董安国, 李楚婷, 梁苗苗. 基于全卷积网络和自编码的高光谱图像分类[J]. 计算机工程与应用, 2022, 58(5): 256-263. |
[4] | 刘遵雄, 石亚鹏, 彭潇雨, 王毅宏. 基于双通道变分自编码器的高光谱图像分类[J]. 计算机工程与应用, 2022, 58(2): 244-251. |
[5] | 任鸿杰, 刘萍, 岱超, 史俊才. 改进DeepLabV3+网络的遥感影像农作物分割方法[J]. 计算机工程与应用, 2022, 58(11): 215-223. |
[6] | 杨广奇, 刘慧, 钟锡武, 陈龙, 钱育蓉. 遥感图像时空融合综述[J]. 计算机工程与应用, 2022, 58(10): 27-40. |
[7] | 李婕, 周顺, 朱鑫潮, 李毅, 王恩果. 结合多通道注意力的遥感图像飞机目标检测[J]. 计算机工程与应用, 2022, 58(1): 209-217. |
[8] | 张朕通,单玉刚,袁杰. 联合多尺度和注意力机制的遥感影像检测[J]. 计算机工程与应用, 2021, 57(9): 212-216. |
[9] | 魏玮,杨茹,朱叶. 改进CenterNet的遥感图像目标检测[J]. 计算机工程与应用, 2021, 57(6): 191-199. |
[10] | 万亚玲,钟锡武,刘慧,钱育蓉. 卷积神经网络在高光谱图像分类中的应用综述[J]. 计算机工程与应用, 2021, 57(4): 1-10. |
[11] | 佘海龙,解山娟,邹静洁. 标准分数降维的3D-CNN高光谱遥感图像分类[J]. 计算机工程与应用, 2021, 57(4): 169-175. |
[12] | 于多,黄永东. 基于SPCA和域变换递归滤波的高光谱图像分类[J]. 计算机工程与应用, 2021, 57(4): 199-208. |
[13] | 胡杰,张莹,谢仕义. 国产遥感影像分类技术应用研究进展综述[J]. 计算机工程与应用, 2021, 57(3): 1-13. |
[14] | 李代栋,赫晓慧,李盼乐,田智慧,周广胜. 基于SPUD-ResNet的遥感影像道路提取网络[J]. 计算机工程与应用, 2021, 57(23): 240-247. |
[15] | 谢俊章,彭辉,唐健峰,侯奕辰,曾庆喜. 改进YOLOv4的密集遥感目标检测[J]. 计算机工程与应用, 2021, 57(22): 247-256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||