计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (13): 195-203.DOI: 10.3778/j.issn.1002-8331.2011-0211
袁金丽,赵琳琳,郭志涛,苏逸,卢成钢
YUAN Jinli, ZHAO Linlin, GUO Zhitao, SU Yi, LU Chenggang
摘要: 针对计算机断层扫描(CT)影像中肺结节检测灵敏度较低,且存在大量假阳性的问题,提出一种改进的U型残差网络用于肺结节检测。采取U-net网络的U型结构并利用残差学习方式构建深层次网络,同时引入自校正卷积增加特征的信息提取能力,进行通道间与局部信息增强,有利于检测不同形态的结节;通过引入的通道注意力机制,对特征提取过程中的特征进行重标定,实现自适应学习特征权重,进一步提高检测的准确率;引入DR loss作为该算法的分类损失函数,用于解决数据正负样本失衡问题。在LUNA16数据集对所提算法进行了验证,CPM得分达到0.901,提高了肺结节检测的灵敏度,而且有效降低了检测结果的平均假阳性个数,可有效辅助放射科医师对肺结节进行检测。