计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (15): 162-168.DOI: 10.3778/j.issn.1002-8331.2101-0050
姚宏亮,徐礼维,杨静,俞奎
YAO Hongliang, XU Liwei, YANG Jing, YU Kui
摘要: 历史数据对未来状态的影响具有隐蔽性,导致基于数据的股市趋势预测是一个公开难题。为了有效地发现历史数据对股市未来状态的影响力,利用动态影响图建模成交量和K线形态之间的结构关系,提出一种基于量价结构关系的联合树推理预测算法(VP-JT)。提取股票的阶段成交量特征和阶段K线形态特征,给出阶段成交量对于股市价格影响的作用原理;利用配合度量化当前阶段成交量与K线形态之间关系一致性程度;利用动态影响图建模阶段量价在时间上的作用过程;通过联合树的自动推理对股市未来状态进行预测。在实际数据上进行实现和算法比较,实验结果表明量价结构关系的联合树推理算法具有更高的准确率。